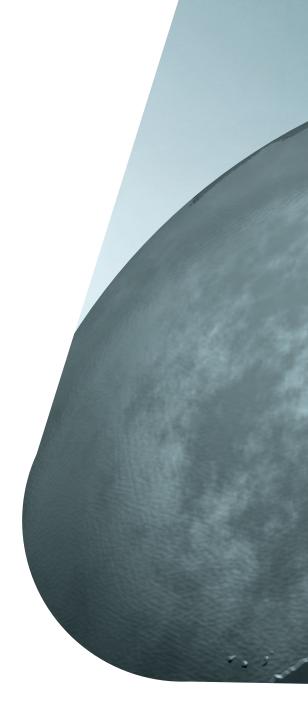


Tailor-Made Protectivity™ Cladding Filler Metals against Corrosion



voestalpine Böhler Welding www.voestalpine.com/welding

Cladding Product Line

High-quality industrial-use cladding filler metals for anti-corrosion applications

Tailor-Made Protectivity™

Industry experience and application know-how combined with innovative and custom (tailor-made) cladding products guarantee that our customers obtain the ideal combination of productivity and protection, within the shortest operating times and up to the maximum performance capacity of their products.

Cladding

Cladding is defined as the process of protecting one metal by bonding a second metal to its surface. Providing a corrosion or oxidation resistant surface on less corrosion resistant material, e.g. cladding of stainless steel or nickel-based layer on a carbon steel base.

Industry Focus

Oil & Gas Upstream, Oil & Gas Downstream, Chemical, Power Generation, Steelworks, Mining, Pumps, Valves & Fittings, Pulp & Paper

Contents

Introduction	2 - 3
Covered Electrodes	4
TIG Rods	5
Solid Wires	6
Cold & Hot Wires	6
Gas Shielded Cored Wires	7 - 8

Open Arc Cored Wires	8
SAW Solid Wires	9
SAW Cored Wires	9
Strips	10
Solutions for Strip Cladding	11

Name	Classification	Mechanical properti	es of the weld metal	Characteristics and field of use				
	EN ISO 3581-A	Yield strength $R_{P0,2}$	Tensile strength R_m					
UTP 68	E 19 9 Nb R 3 2	> 380 MPa	> 590 MPa	UTP 68 is suitable for joining and surfacing (clad-				
rutil coated stick electrode	AWS A5.4	Elongation A	Impact strength K_v	ding) of stabilized and non stabilized CrNi steels and CrNi cast steels.				
	E 347-17	> 30 %	> 47 J (RT)					
	EN ISO 3581-A	Yield strength R _{P0,2}	Tensile strength R _m					
UTP 68 LC	E 19 9 L R 3 2	> 350 MPa	> 520 MPa	UTP 68 LC, with a low carbon content, is used				
low carbon stick electrode	AWS A5.4	Elongation A	Impact strength K_v	for repair and building up of identical low carbon, austenitic CrNi steels and CrNi cast steels.				
	E 308 L-17	> 35 %	> 47 J (RT)					
	EN ISO 3581-A	Yield strength R _{P0,2}	Tensile strength R _m					
UTP 68 Mo	E 19 12 3 Nb R 3 2	380 MPa	560 MPa	UTP 68 Mo is used for repair and surfacing of				
stabilized stick electrode	AWS A5.4	Elongation A	Impact strength K_v	stabilized and non-stabilized CrNiMo steels and CrNiMo cast steels.				
	E 318-16	30 %	55 J (RT)					
	EN ISO 3581-A	Yield strength R _{P0,2}	Tensile strength R _m					
UTP 68 MoLC	E 19 12 3 L R 3 2	380 MPa	560 MPa	UTP 68 MoLC, with a low carbon content, is used for repair and surfacing of identical, low carbon,				
low carbon stick electrode	AWS A5.4	Elongation A	Impact strength K_v	austenitic CrNiMo steels and CrNiMo cast steels.				
	E 316 L-17	30 %	60 J (RT)					
	EN ISO 14172	Yield strength R _{P0,2}	Tensile strength $R_{_m}$					
UTP 759 Kb	E Ni 6059 (NiCr23Mo16)	>450 MPa	> 720 MPa	UTP 759 Kb is employed primarily for welding components in environmental plants and plants				
basic coated NiCrMo stick electrode	AWS A5.11	Elongation A	Impact strength $\rm K_{\rm v}$	for chemical processes with highly corrosive media. Cladding on low-alloyed steels.				
	E NiCrMo-13	> 30 %	> 60 J (RT)					
	EN ISO 14172	Yield strength R _{P0,2}	Tensile strength R_m					
UTP 776 Kb	E Ni 6276 (NiCr15Mo15Fe6W4)	> 450 MPa	> 720 MPa	UTP 776 Kb is employed primarily for joint weld- ing of matching base materials, as Material-No.				
basic covered electrode	AWS A5.11	Elongation A	Impact strength $\rm K_{\rm v}$	2.4819 (NiMo16Cr15W) and surfacing (cladding) on low-alloyed steels.				
	E NiCrMo-4	> 30 %	> 70 J (RT)					
	EN ISO 14172	Yield strength R _{P0,2}	Tensile strength $R_{_m}$	UTP 4225 is suitable for joining and surfacing				
UTP 4225	E Ni 8165 (NiCr25Fe- 30Mo)	> 350 MPa	> 550 MPa	(cladding) of alloys of similar nature, such as e. g. NiCr21Mo, furthermore for welding of				
basic covered electrode	, , , , , , , , , , , , , , , , , , ,	Elongation A	Impact strength K_v	CrNiMoCu-alloyed austenitic steels used for high quality tank and apparatus construction in the				
		> 30 %	> 80 J (RT)	chemical industry, corrosion resistance in media of sulphuric- and phosphoric acid.				
	EN ISO 14172	Yield strength R _{P0.2}	Tensile strength R _m	UTP 6222 Mo is particularly suited for joining and				
UTP 6222 Mo	E Ni 6625 (NiCr22M- o9Nb)	> 450 MPa	> 760 MPa	surfacing (cladding) on nickel alloys, austenitic steels, low temperature nickel steels, austen-				
basic coated NiCrMo-stick elec-	AWS A5.11	Elongation A	Impact strength K _v	itic-ferritic-joints and claddings of the same or similar nature, like 2.4856 (NiCr22Mo9Nb), 1.48 (Y20 NiCr4122) 2011 4520 (Y2 NiCr4Ac), 25				
trode	E NiCrMo-3	> 30 %	> 75 J (RT)/ > 45 J (–196 °C)	(X30 NiCrAITi 32 20), 1.4529 (X2 NiCrMoĆu 25 20 5).				

Covered Electrodes for Cladding Applications (Anti-corrosion)

Name	Classification	Mechanical properti	es of the weld metal	Characteristics and field of use			
	EN ISO 14343-A	Yield strength $R_{P0,2}$	Tensile strength R_{m}				
	W 19 9 Nb Si	> 420 MPa	> 600 MPa	UTP A 68 is suitable for surfacing (cladding) in			
UTP A 68	AWS A 5.9	Elongation A	Impact strength K_v	chemical apparatus and vessel construction for working temperatures of –196 °C up to 400 °C.			
	ER 347 (Si)	> 30 %	> 100 J (RT)				
	EN ISO 14343-A	Yield strength R _{P0,2}	Tensile strength R_m				
UTP A 68 LC	W 19 9 L (Si)	400 MPa	600 MPa	UTP A 68 LC is suitable for surfacing (cladding) in			
UTP A 68 LC	AWS A5.9	Elongation A	Impact strength K_v	chemical apparatus and vessel construction for working temperatures of –196 °C up to 350 °C.			
	ER 308 L (Si)	35 %	100 J (RT)				
	EN ISO 14343-A	Yield strength R _{P0,2}	Tensile strength R _m				
UTP A 68 Mo	W 19 12 3 Nb (Si)	460 MPa	680 MPa	UTP A 68 Mo is applicable for surfacing (clad- ding) of stabilized, corrosion resistant CrNiMo			
	AWS A5.9	Elongation A	Impact strength K_v	steels of similar nature in the construction of chemical apparatus and vessels up to working			
	ER 318 (Si)	35 %	100 J (RT)	temperatures of -120 °C up to 400 °C.			
	EN ISO 14343-A	Yield strength R _{P0,2}	Tensile strength R _m				
	W 19 12 3 L (Si)	420 MPa	600 MPa	UTP A 68 MoLC is used for surfacing (cladding) of low-carbon, corrosion resistant CrNiMo steels			
UTP A 68 MoLC	AWS A5.9	Elongation A	Impact strength K_v	exposed to high corrosion for working tempera- tures up to 350 °C.			
	ER 316 L (Si)	35 %	100 J (RT)				
	EN ISO 18274	Yield strength R _{P0,2}	Tensile strength $R_{_m}$	UTP A 759 is suitable for welding components			
UTP A 759	S Ni 6059 (NiCr23Mo16)	> 450 MPa	> 720 MPa	in plants for chemical processes with highly corrosive media, for joining materials of the same			
01P A 759	AWS A5.14	Elongation A	Impact strength K_v	or similar natures and materials with low alloyed steels as well as for surfacing (cladding) on low			
	ER NiCrMo-13	> 35 %	> 100 J (RT)	alloyed steels.			
	EN ISO 18274	Yield strength R _{P0,2}	Tensile strength $R_{_m}$				
UTP A 776	S Ni 6276 (NiCr15Mo16Fe6W4)	> 450 MPa	> 750 MPa	UTP A 776 is suitable for joint welding of match- ing base materials, as 2.4819 NiMo16Cr15W			
	AWS A5.14	Elongation A	Impact strength K_v	UNS N10276 and surfacing (cladding) on low-al- loyed steels.			
	ER NiCrMo-4	> 30 %	> 90 J (RT)				
	EN ISO 18274	Yield strength R _{P0,2}	Tensile strength R _m	UTP A 4221 is suitable for joining and surfacing			
	S Ni 8065 (NiFe- 30Cr21Mo3)	360 MPa	> 550 MPa	(cladding) of alloys of similar nature, furthermore for welding of CrNiMoCu-alloyed austenitic			
UTP A 4221	AWS A5.14	Elongation A	Impact strength K_v	steels used for high quality tank and apparatus construction in the chemical industry, corrosion			
	ER NiFeCr-1 (UNS N08065)	> 30 %	> 100 J (RT)	resistance in media of sulphuric and phosphoric acid.			
	EN ISO 18274	Yield strength R _{P0,2}	Tensile strength R _m	UTP A 6222 Mo has a high nickel content and is			
	S Ni 6625 (NiCr22M- o9Nb)	> 460 MPa	> 740 MPa	suitable for welding high-strength and high-corror sion resistant nickel-base alloys. It can be used			
UTP A 6222 Mo	AWS A5.14	Elongation A	Impact strength $\rm K_{\rm v}$	for joining ferritic steel to austenitic steel as we as for surfacing (cladding) on steel. It is also possible to weld 9 % nickel steels using this w			
	ER NiCrMo-3	> 30 %	> 100 J (RT)/ > 85 J (–196 °C)	due to its high yield strength.			

TIG Rods for Cladding Applications (Anti-corrosion)

Name	Classification	Mechanical properti	es of the weld metal	Characteristics and field of use					
	EN ISO 14343-A	Yield strength $R_{P0,2}$	Tensile strength R_{m}						
UTP A 68	G 19 9 Nb Si	> 420 MPa	> 600 MPa	UTP A 68 is suitable for surfacing (cladding) in					
UTP A 66	AWS A5.9	Elongation A	Impact strength K_v	chemical apparatus and vessel construction for working temperatures of –196 °C up to 400 °C.					
	ER 347 (Si)	> 30 %	> 100 J (RT)						
	EN ISO 14343-A	Yield strength $R_{_{P0,2}}$	Tensile strength R _m						
	G 19 9 L (Si)	400 MPa	600 MPa	UTP A 68 LC is suitable for surfacing in chemical					
UTP A 68 LC	AWS A5.9	Elongation A	Impact strength K_v	apparatus and vessel construction for working temperatures of –196 °C up to 350 °C.					
	ER 308 L (Si)	35 %	100 J (RT)						
	EN ISO 14343-A	Yield strength R _{P0,2}	Tensile strength R _m	UTP A 68 Mo is applicable for surfacing (clad-					
	G 19 12 3 Nb (Si)	460 MPa	680 MPa	ding) of stabilized, corrosion resistant CrNiMo steels of similar nature in the construction of					
UTP A 68 Mo	AWS A5.9	Elongation A	Impact strength K_v	chemical apparatus and vessels for working temperatures of -120 °C up to					
	ER 318 (Si)	35 %	100 J (RT)	400 [°] °C.					
	EN ISO 14343-A	Yield strength R _{P0,2}	Tensile strength R _m						
	G 19 12 3 L (Si)	420 MPa	600 MPa	UTP A 68 MoLC is used for surfacing (cladding) of low-carbon, corrosion resistant CrNiMo steels					
UTP A 68 MoLC	AWS A5.9	Elongation A	Impact strength K_v	exposed to high corrosion for working tempera- tures up to 350 °C.					
	ER 316 L (Si)	35 %	100 J (RT)	· · · · · · · · · · · · · · · · · · ·					
	EN ISO 18274	Yield strength R _{P0,2}	Tensile strength R _m						
	S Ni 6686 (NiCr21Mo16W4)	> 450 MPa	> 760 MPa	UTP A 786 is particularly designed for claddings of desulphurization and waste incineration com-					
UTP A 786	AWS A5.14	Elongation A	Impact strength K_v	ponents, such as pipes and finned tubes made o heat resistant steels.					
	ER NiCrMo-14	> 30 %	> 50 J (RT)						
	EN ISO 18274	Yield strength R _{P0.2}	Tensile strength R _m	UTP A 4221 is suitable for joining and surfacing					
	S Ni 8065 (NiFe- 30Cr21Mo3)	360 MPa	> 550 MPa	(cladding) of alloys of similar nature, furthermore for welding of CrNiMoCu-alloyed austenitic					
UTP A 4221	AWS A5.14	Elongation A	Impact strength K_v	steels used for high quality tank and apparatus construction in the chemical industry, corrosion					
	ER NiFeCr-1 (UNS N08065)	> 30 %	> 100 J (RT)	resistance in media of sulphuric and phosphoric acid.					
	EN ISO 18274	Yield strength $R_{_{P0,2}}$	Tensile strength R _m	UTP A 6222 Mo has a high nickel content and is					
UTP A 6222 Mo	S Ni 6625 (NiCr22M- o9Nb)	460 MPa	> 740 MPa	suitable for welding high-strength and high-corro sion resistant nickel-base alloys. It can be used for joining ferritic steel to austenitic steel as well					
	AWS A5.14	Elongation A	Impact strength K_v	as for surfacing (cladding) on steel. It is also possible to weld 9 % nickel steels using this					
	ER NiCrMo-3	> 30 %	> 100 J (RT)/ > 85 J (–196 °C)	due to its high yield strength.					

Solid Wires for Cladding Applications (Anti-corrosion)

Cold & Hot Wire TIG Applications

Name	Classification	Characteristics and field of use
	EN ISO 18274 S Ni 6625 (NiCr22M- o9Nb)	UTP A 6222 Mo-3 has been developed for applications in the oil & gas industry, and is mainly used for cladding and joining of unalloyed and high strength low alloyed steel (HSLA) components. Typical applications are internal cladding
UTP A 6222 Mo-3	AWS A5.14	of tubes & pipes, risers, and subsea components such as manifolds, BOPs, Christmas trees, well heads, flanges, valve bodies, blocks etc. to improve corrosion resistance to surfaces exposed to hydrocarbon and hydrogen sulphide.
	ER NiCrMo-3	

Name	Classification	Hard	ness			С	omp	osit	ion (All w	veld	meta	al)					Characteristics and field of use
01/ 400 0	DIN 8555	HB	HRC	с	Mn	Si	Cr	Ni	Мо	Co	Nb	Ti	w	AI	v	в	Fe	Alloy depositing a ferritic steel containing 17 % Chromium designed to resist corro-
SK 430-G	MF 5-GF-200-C	190		0,06	0,80	0,60	17,80					0,20					Bal.	sion at high temperatures, particularly in presence of sulphurous gas.
SK 519-G	DIN 8555 MF 8-GF-C	НВ	HRC	с	Mn	Si	Cr	Ni	Mo	Co	Nb	Ti	w	AI	v	в	Fe	For welding and cladding stainless steels of similar composition where corrosion resis-
	DIN 8556 MSG X2-CrNiMo- Cu 20-25			0,02	2,80	0,50	20,50	24,20	5,00								Bal.	tance to hot sulphuric and cold hydrochloric acid is required.
SK 741-G	DIN 8555 MF 5-GF-40-C	НВ	HRC	с	Mn	Si	Cr	Ni	Mo	Co	Nb	Ti	w	AI	v	в	Fe	Alloy depositing a ferritic-martensitic steel containing 13 % Chromium, 5 % Nickel and 1 % Molybdenum. Designed to resist metal-to-metal wear, corrosion and thermal
	Nir 5-Gr-40-0		41	0,06	0,50	0,60	13,00	5,50	0,80								Bal.	fatigue fire cracking. Field of use: surfacing (cladding) of continuous casting rollers of very small diameters (<150mm).
SK 768-G	DIN 8555 MF 5-GF-350-C	HB	HRC	с	Mn	Si	Cr	Ni	Mo	Co	Nb	Ti	w	AI	v	в	Fe	Alloy depositing a ferritic-martensitic steel containing 13 % Chromium, 5 % Nickel and 2 % Molybdenum. Designed to resist metal-to-metal wear, corrosion and thermal
			34	0,02	0,30	0,30	14,50	6,30	2,50								Bal.	fatigue fire cracking. Field of use: surfacing (cladding) of continuous casting rollers of very small diameters (< 150mm).
SK TOOL	DIN 8555 MF 23-GF-200-	HB	HRC	с	Mn	Si	Cr	Ni	Mo	Co	Nb	Ti	w	AI	v	в	Fe	NiCrMo alloy with addition of Cobalt. Designed for hard-surfacing of parts subject to oxidation, corrosion and mechanical stresses at high temperature (1,100 °C). For reduced levels of dilution and an improved
ALLOY Co-G	CKZ	220		0,03	1,30	0,70	16,00	Bal.	16,00	2,50			4,00				3,00	weldability, we recommend using a pulsed MIG welding mode. Field of use: punches for extrusion of steel pipes, hot working tools.
SK U 521-G	DIN 8555	НВ	HRC	с	Mn	Si	Cr	Ni	Mo	Co	Nb	ті	w	AI	v	в	Fe	Nickel-base super-alloy with addition of Co- balt providing the most powerful strength- ening effect at high temperature due to the
	MF 23-GF-200-TZ	200		0,01		0,30	18,50	Bal.	4,50	12,50		3,50		1,00			1,80	precipitation of Ni3 (AITi) phase. Enhanced weldability. Field of use: rebuilding of forging hammers.
SK STELKAY	DIN 8555	НВ	HRC	с	Mn	Si	Cr	Ni	Mo	Co	Nb	Ti	w	AI	v	в	Fe	Cobalt base alloy providing excellent resistance to metal-to-metal wear, oxidation and high stress abrasion wear, in corrosive environments at high temperature. For reduced levels of dilution and an improved
1-G	MF 20-GF-55-CTZ		54	2,30	0,80	1,60	26,50			Bal.			11,50				3,00	weldability, we recommend using a pulsed MIG welding mode. Field of use: mill guides, palm nut oil extruder, plastic extrusion screws, mixer blades, scrapers, rubber mixer.
SK STELKAY	DIN 8555	НВ	HRC	с	Mn	Si	Cr	Ni	Мо	Co	Nb	ті	w	AI	v	в	Fe	Cobalt base alloy providing excellent re- sistance to metal-to-metal wear, oxidation, thermal cycling and impact in corrosive environments at high temperature. For reduced levels of dilution and an improved
6-G	MF 20-GF-40-CTZ		40	0,95	0,80	1,40	30,00			Bal.			4,20				3,00	weldability, we recommend usin an used MIG welding mode. Field of use: valves, valve seats in motor vehicles, hot shear blades, extruder screws, clack valves and seats, dies, punches.
	DIN 8555	НВ	HRC	с	Mn	Si	Cr	Ni	Мо	Co	Nb	ті	w	AI	v	в	Fe	Cobalt base alloy providing excellent re- sistance to metal-to-metal wear, oxidation, thermal cycling and impact in corrosive environments at high temperature. For reduced levels of dilution and an improved
SK STELKAY 6 A-G	MF 20-GF-45-CTZ		43	1,35	0,80	1,50	27,00			Bal.			3,50				3,00	reduced levels of dilution and an improved weldability, we recommend using a pulsed MIG welding mode. Field of use: valves, valve seats in motor vehicles, hot shear blades, extruder screws, clack valves and seats, dies, punches.

Gas Shielded Wires for Cladding Applications (Anti-corrosion)

Name	Classification	Hard	ness		Composition (All weld metal)											Characteristics and field of use			
SK STELKAY 6 T-G CTZ		НВ	HRC	С	Mn	Si	Cr	Ni	Mo	Co	Nb	Ti	W	AI	V	В	Fe	Cobalt base wire designed to be used with the GTAW process (TIG). Alloy providing excellent resistance to metal-to-metal wear, oxidation, thermal cycling and impact in cor-	
			40	0,95	0,80	0,80	31,50			Bal.			5,00				3,00	rosive environments at high temperature. Field of use: valves, valve seats in motor vehicles, hot shear blades, extruder screws, clack valves and seats, dies, punches.	
SK STELKAY	DIN 8555	НВ	HRC	С	Mn	Si	Cr	Ni	Мо	Co	Nb	Ti	W	AI	V	в	Fe	Cobalt base alloy providing excellent resis- tance to metal-to-metal wear, thermal shocks, oxidation in corrosive environments at high temperature. For reduced levels of dilution	
21-G MF 20-GF-300- CTZ			32	0,27	1,00	1,20	28,00	2,40	5,00	Bal.							3,50	and an improved weldability, we recommend using a pulsed MIG welding mode. Field of use: extrusion dies, hot working tools, turbine injectors, valve seats, ingot tong bits.	

Open Arc Cored Wires for Cladding Applications (Anti-corrosion)

Name	Classification	Hard	ness	Composition (All weld metal)										Characteristics and field of use					
SK 714 N-O	DIN 8555	HB		с	Mn	Si	Cr	Ni	Mo	Nb	Ti	w	v	N	Fe	Alloy depositing a ferritic-martensitic steel with ad- dition of nitrogen, designed to resist metal-to-met-			
SK / 14 N-O	K 714 N-O MF 5-GF-45		44	0,03	1,00	0,60	13,00	4,20	0,50					0,10	Bal.	al wear, corrosion and thermal fatigue. Field of use: cladding of continuous casting rollers.			
SK 741-0	DIN 8555	HB	HRC	с	Mn	Si	Cr	Ni	Mo	Nb	Ti	w	v	в	Fe	Alloy depositing a ferritic-martensitic steel con- taining 13 % Chromium, 5 % Nickel and 1 % Mo- lybdenum designed to resist metal-to-metal wear.			
Sit 741-0	MF 5-GF-45-C		43	0,02	0,60	0,60	12,60	5,20	0,80						Bal.	corrosion and thermal fatigue fire cracking. Field of use: cladding of continuous casting rollers.			

Name	Classification	Composition (All weld metal)	Characteristics and field of use			
	EN ISO 18274	Yield strength R _{P0,2}	Tensile strength R _m				
UTP UP 776	S Ni 6276 (NiCr15Mo16Fe6W4)	> 450 MPa	> 690 MPa	UTP UP 776 is suitable for joining and surfacing (cladding) on matching and similar alloys such as			
+ RECORD Flux (1)	AWS A5.14	Elongation A	Impact strength K_v	2.4819 NiMo16Cr15W UNS N10276 and surface claddings on low-alloyed steels.			
	ER NiCrMo-4	> 35 %	> 70 J (RT)				
	EN ISO 18274	Yield strength $R_{P0,2}$	Tensile strength $R_{_m}$	UTP UP 6222 Mo is applied for joint welding of			
UTP UP 6222 Mo	S Ni 6625 (NiCr22M- o9Nb)	460 MPa	725 MPa	base materials with the same or with a similar com- position, e.g. Alloy 625 (UNS N06625) or NiCr22M- o9Nb, Material-No. 2.4856 or mixed combinations			
+ RECORD Flux (1)	AWS A5.14	Elongation A	Impact strength K_v	with stainless steels and carbon steels. UTP UP 6222 Mo is also applied on alloyed or unalloyed			
	ER NiCrMo-3	40 %	> 80 J (RT)/ 65 J (–196 °C)	steels for cladding of corrosion resistant plants.			

SAW Solid Wires for Cladding Applications (Anti-corrosion)

(1) Please contact your sales representative for the matching wire / flux combination

Name	Classification	Hard	ness	Composition (All weld metal)									Characteristics and field of use			
SK 410 NiMo-SA	DIN 8555	НВ	HRC	с	Mn	Si	Cr	Ni	Mo	Nb	Ti	w	v	в	Fe	Alloy depositing a ferritic-martensitic steel containing 13 % Chromium, 5 % Nickel and 1 % Molybdenum. Designed to resist metal-to-metal
RECORD SA	UP 5-GF-40-C		39	0,05	1,00	0,30	12,50	5,00	0,90						Bal.	wear, corrosion and thermal fatigue fire cracking. Field of use: continuous casting rollers.
SK 415-SA +	DIN 8555	HB	HRC	с	Mn	Si	Cr	Ni	Mo	Nb	Ti	w	v	в	Fe	Alloy depositing a ferritic-martensitic steel designed to resist metal-to-metal wear, corrosion
RECORD SA RECORD SK	UP 5-GF-45-C		42	0,08	0,90	0,40	13,50	2,10	1,10	0,20			0,30		Bal.	and thermal fatigue. Field of use: continuous casting rollers.
SK 420-SA	DIN 8555	НВ	HRC	с	Mn	Si	Cr	Ni	Mo	Nb	Ti	w	V	в	Fe	Alloy depositing a martensitic steel containing 13 % Chromium giving a good resistance to metal-to-metal wear and corrosion. Field of use:
RECORD SA	UP 6-GF-55-C		53	0,27	1,30	0,30	13,50								Bal.	dredging pump casings, continuous casting rollers.
SK 430C-SA	DIN 8555	HB	HRC	с	Mn	Si	Cr	Ni	Mo	Nb	Ti	w	v	в	Fe	Alloy depositing a ferritic steel containing 17 % Chromium. Designed to resist corrosion at high temperatures, particularly in presence of sulphu-
RECORD SA RECORD SK	UP 5-GF-200-C	175		0,04	0,90	0,50	19,50								Bal.	rous gas. Field of use: continuous casting rollers situated at the top of the line.
SK 461C-SA	DIN 8555	HB	HRC	с	Mn	Si	Cr	Ni	Mo	Co	Ti	w	v	в	Fe	Alloy depositing a ferritic-martensitic steel designed to resist metal-to-metal wear, corrosion
RECORD SA RECORD SK	UP 6-GF-50-C		54	0,26	0,90	0,50	12,20	0,40	1,40	1,80		0,90	1,00		Bal.	and thermal fatigue fire cracking. Field of use: continuous casting rollers.
SK 742 N-SK +	DIN 8555	НВ	HRC	с	Mn	Si	Cr	Ni	Mo	Nb	Ti	w	v	в	Fe	Alloy depositing a ferritic-martensitic steel with addition of Nitrogen. Designed to enhance the resistance to thermal fatigue and intragranular
RECORD SK	UP 5-GF-45-C		44	0,04	1,20	0,40	13,50	3,30	1,30	0,10			0,15	0,06	Bal.	corrosion by reducing the formation of carbides at grain boundaries. Field of use: continuous casting rollers.

SAW Cored Wires for Cladding Applications (Anti-corrosion)

Please contact your sales representative for the matching wire / flux combination

Our SOUDOTAPE Strips and Record fluxes are summarized in the special brochure "Strips and Fluxes for Electroslag and Submerged Arc Welding".

UTP Maintenance offers a full and unique strip & flux product portfolio for electroslag and submerged strip cladding of all types of alloys:

- unalloyed and low alloyed
- martensitic alloys (420, 430, 410NiMo ...)
- standard stainless steels (308L, 316, 347 ...)

- special stainless steels (317L, 318, 904L, duplex, superduplex ...)
- Nickel alloys (600, 625, 825, C22, C276, alloy 59, alloy 400 …)
- Cobalt alloys and CuNi alloys

UTP Maintenance also offers specially designed cladding nozzles to perform strip cladding from small pipes to very large vessels (SK 30ES2-300, SK 60 ES3-207, SK 125 ES1-300 ...).

Just contact us for additional information, further technical data or any questions regarding strips and fluxes.

Alloy	Type of strip	Type of flux		С	Mn	Si	Cr	Ni	Мо	Nb	Fe	Cu	FN	Hardness
316L	SOUDOTAPE 21.13.3L	RECORD EST 122	ESW/ single layer	0,03	1,30	0,40	18,20	12,60	2,60		R		6,00	
347	SOUDOTAPE 21.11.LNb	RECORD EST 122	ESW/ single layer	0,03	1,40	0,40	19,00	10,10		0,50	R		7,00	
410NiMo	SOUDOTAPE 430	RECORD RT 152	SAW/2 layer	0,04	0,50	0,90	13,90	3,80	0,90		R			390 HB
904L	SOUDOTAPE 20.25.5LCu	RECORD EST 385-1	ESW/ single layer	0,02	2,50	0,10	19,40	25,00	4,40		R	1,30		
825	SOUDOTAPE 825	RECORD EST 138	ESW/ single layer	0,02	0,60	0,60	22,30	R	2,80		34,00	1,50		
625	SOUDOTAPE 625	RECORD EST 625-1	ESW/ single layer	0,03	0,20	0,30	21,50	R	9,00	3,50	7,90			

Please contact your sales representative for further information.

Solutions for Cladding

	UTP Maintenance Product	Process
Ball Valves	UTP A 6222 Mo	GTAW & GMAW
	UTP A 6222 Mo-3	Cold and Hot Wire GTAW/TIG
	SOUDOTAPE 625 + RECORD Fluxes	ESW/SAW Strip Cladding
Wellhead Connectors	UTP A 6222 Mo-3	Cold and Hot Wire GTAW/TIG
Blow Out Preventer "BOP"	SOUDOTAPE A + RECORD NiMoT	SAW Strip Cladding
Wellhead Housing	UTP A 6222 Mo-3	Cold and Hot Wire GTAW/TIG
Continuous Casting Rollers	SK 741-G	FCAW-G
	SK 714 N-O	FCAW-O
	SK 742 N-SK + RECORD SK	SAW
	SOUDOTAPE 430 + RECORD RT152	SAW Strip Cladding
Vessels	SOUDOTAPE Strips and RECORD Fluxes	ESW/SAW Strip Cladding
	alloy 316, 347, 625, 825, NiCu	
Pipes	UTP A 6222 Mo	GTAW & GMAW
	UTP A 6222 Mo-3	Cold and Hot Wire GTAW/TIG
	SOUDOTAPE 625/825 + RECORD Fluxes	ESW/SAW Strip Cladding
Tube Sheet	SOUDOTAPE Strips and RECORD Fluxes	ESW/SAW Strip Cladding
	alloy 316, 347, duplex, alloy 600, 625, 825, 59, NiCu	

voestalpine Böhler Welding

Welding know-how joins steel

With over 100 years of experience, voestalpine Böhler Welding is the global top address for the daily challenges in the areas of joint welding, wear and corrosion protection as well as brazing. Customer proximity is guaranteed by more than 40 subsidiaries in 25 countries, with the support of 2,200 employees, and through more than 1,000 distribution partners worldwide. With individual consultation by our application technicians and welding engineers, we make sure that our customers master the most demanding welding challenges. voestalpine Böhler Welding offers three specialized and dedicated brands to cater for our customers' and partners' requirements.

Lasting Connections – More than 2,000 products for joint welding in all conventional arc welding processes are united in a product portfolio that is unique throughout the world. Creating Lasting Connections is the brand's philosophy in welding and between people.

Tailor-Made Protectivity[™] – Decades of industry experience and application knowhow in the areas of repair of cracked material, anti-wear and cladding, combined with innovative and custom-tailored products, guarantee customers an increase in the productivity and protection of their components.

In-Depth Know-How – Through deep insight into processing methods and ways of application, Fontargen Brazing provides the best brazing and soldering solutions based on proven products with German technology. The expertise of this brand's application engineers has been formulated over many years of experience from countless application cases.

voestalpine Böhler Welding www.voestalpine.com/welding