

voestalpine Böhler Welding www.voestalpine.com/welding

Handbook for brazing consumables

Copyright by voestalpine Böhler Welding Fontargen GmbH Nominal charge: 5,- €

fontargen brazing

Contents

fontargen brazing

Summary in groups of fontargen brazing products	Page
Group 1 Brazing and soldering alloys	9 – 109
Group 2 Fluxes	114 – 117
Group 3 Wire electrodes	122 – 139
Group 4 Welding rods	143 – 159
Group 5 Technical advice for the practitioner	163 – 165

Group 1

Brazing and soldering alloys

- a) Brazing alloys: Rods, Wire, Foil
- b) Brazing alloys: Pastes
- c) Soldering alloys: Rods, Wire
- d) Soldering alloys: Pastes
- e) High-temperature brazing alloys: Rods, Wire, Foil
- f) High-temperature brazing alloys: Pastes, Powder

a) Brazing alloys: Rods,	Wire, Foil	
Туре	DIN EN 1044 / DIN 8513 / EN ISO 17672	Page
A 101	CU 305 / L-CuNi10Zn42 / Cu 773	9
A 102	CU 305 / L-CuNi10Zn42+Ag / -	10
A 210	CU 301 / L-CuZn40 / Cu 470a	11
A 210 K	CU 306 / L-CuZn39Sn / Cu 681	12
A 211	CU 306 / L-CuZn39Sn / -	13
A 211 RF	CU 306 / L-CuZn39Sn / Cu 681	14
A 204	CP 201 / L-CuP8 / CuP 182	15
A 2003	CP 202 / L-CuP7 / CuP 180	16
A 2004	CP 203 / L-CuP6 / CuP 179	17
A 2005	CP 302 / L-CuSnP7 / CuP 386	18
A 2006	- / - / CuP 385	19
A 3002	CP 105 / L-Ag2P / CuP 279	20
A 3005	CP 104 / L-Ag5P / CuP 281	21
A 3015	CP 102 / L-Ag15P / CuP 284	22
A 3018	CP 101 / L-Ag18P / CuP 286	23
A 303	AG 206 / L-Ag20 / -	24
A 308 V	AG 401 / L-Ag72 / Ag 272a	25
A 311	AG 203 / L-Ag44 / Ag 244	26
A 312 F	AG 502 / L-Ag49 (mod.) / -	27
A 314	AG 103 / L-Ag55Sn / Ag 155	28
A 317	AG 402 / L-Ag60Sn / Ag 160	29
A 319	AG 106 / L-Ag34Sn / Ag 134	30
A 320	AG 104 / L-Ag45Sn / Ag 145	31
A 324	AG 502 / L-Ag49 / Ag 449	32
A 330	AG 204 / L-Ag30 / Ag 230	33
A 331	AG 205 / L-Ag25 / Ag 225	34
A 332	AG 107 / L-Ag30Sn / Ag 130	35
A 333	- / - / -	36
A 338 F	- / - / -	37
A 338 FT		38
A 340	AG 105 / L-Ag40Sn / Ag 140	39
A 347	AG 102/ L-Ag56Sn / Ag 156	40
A 350	- / - / Ag 450	41
A 384	- / L-Ag72Zn / -	42
	AL 104 / L-AISi12 / AI 112	43
AF 407 LI seamed	AL 104 / L-AISi12 / AI 112	44

Brazing and soldering alloys

b) Brazing alloys: Paste	s	
Туре	DIN EN 1044 / DIN 8513 / EN ISO 17672	Page
AP 210	- / - / -	45
AP 211	- / L-CuZn39Sn / -	46
AP 218	- / - / -	47
AP 2003	CP 202 / L-CuP7 / CuP 180	48
AP 2004	CP 203 / L-CuP6 / CuP 179	49
AP 2005	CP 302 / L-CuSnP7 / CuP 386	50
AP 3018	CP 101 / L-Ag18P / CuP 286	51
AP 308 V	AG 401 / L-Ag72 / Ag 272a	52
AP 314	AG 102 / - / Ag 156	53
AP 317	AG 402 / L-Ag60Sn / Ag 160 - / - / Ag 450	54
AP 350 AP 356	- / - / Ag 450	55
AF 350 AP 47 QL/2	AL 104 / L-AISi12 / AI 112	56 57
	AL 1047 L-AIGHZ / AI 112	57
c) Soldering alloys: Rod	ls, Wire	
Туре	EN ISO 3677 / EN ISO 9453	Page
A 604	S-Sn60Zn40 / -	58
A 604 KA	S-Sn90Zn7Cu3 / -	59
A 611	- / S-Sn96Ag4	60
A 612	- / S-Sn60Pb40	61
A 618 F-SW 34	- / S-Sn60Pb38Cu2	62
A 630	- / S-Pb50Sn50	63
A 631	S-Zn98Al2 / -	64
A 633	S-Zn97Al3 / -	65
A 644	- / S-Sn97Cu3	66
A 665	S-Zn78Al22 / -	67

Brazing and soldering alloys

d) Soldering alloys: Paste	es	
Туре	DIN EN 29453	Page
AP 604/12 AP 638/26 AP 644/12 AP 644/21 AP 653/12	S-Sn99,9 S-Sn99Cu1 S-Sn97Cu3 S-Sn97Cu3 S-Sn96Ag4	68 69 70 71 72
e) High-temperature braz	ing alloys: Rods, Wire, Foil	
Туре	DIN EN 1044 / DIN 8513 / EN ISO 17672	Page
A 200 L A 200 L 58 A 203/6 L A 203/12 L A 205 A 206 A 842	CU 104 / L-SFCu / Cu 141 CU 101 / L-Cu / Cu 110 CU 201 / L-CuSn6 / Cu 922 CU 202 / L-CuSn12 / Cu 925 - / - / Cu 595 - / - / AU 105 / - / Au 827	73 74 75 76 77 78 79
f) High-temperature braz	ing alloys: Pastes, Powder	
Туре	DIN EN 1044 / DIN 8513 / EN ISO 17672	Page
AP 20AL DB AP 21AL AP 21AL C AP 21CL P (CS) AP 21CL P (CS) AP 21CL - 5 AP 21DL / DS AP 21ES B2* AP 21GL / GS AP 21HL / HS AP 21HL / HS AP 21HL	- /L-Cu /Cu 087 - /L-Cu /Cu 087 - /L-Cu /Cu 087 CU 103 /L-SFCu /Cu 099 CU 104 /L-SFCu /Cu 141 CU 103 /L-SFCu /Cu 099 CU 105 / - /Cu 186 - / - / - CU 201 /L-CuSn6 /Cu 922 CU 202 /L-CuSn12 /Cu 925	80 81 82 83 84 85 86 87 88 89 90
AP 22GS HTL 1	- / - / - NI 101 / L-Ni1 / -	91 92
HTL 1 A HTL 2 HTL 2 AP Nr. 4 HTL 5 HTL 5 CR	NI 1A1 / L-Ni1a / Ni 610 NI 102 / L-Ni2 / Ni 620 NI 102 / L-Ni2 / Ni 620 NI 105 / L-Ni5 / Ni 650	93 94 95 96 97
HTL 5 M	- / - / -	98

7

Brazing and soldering alloys

Continuation		
HTL 6	NI 106 / L-Ni6 / Ni 700	99
HTL 6 AP B	NI 106 / L-Ni6 / Ni 700	100
HTL 7	NI 107 / L-Ni7 / Ni 710	101
HTL 8	NI 108 / L-Ni8 / Ni 800	102
HTL 9	NI 109 / - / -	103
HTL 10	- / - / -	104
HTL 14	AU 105 / - / Au 827	105
HTL 17	- / - / -	106
HTL 170	- / - / -	107
HTL 270	- / - / -	108
HTL 310	- / - / -	109

ISO 17672:	Cu 773
DIN EN 1044:	CU 305
DIN 8513:	L-CuNi10Zn42
EN ISO 3677:	B-Cu48ZnNi(Si)-890/920
AWS A 5.8:	RBCuZn-A
Material-no.:	2.0711

Cu	Ni	Si	Mn	Sn	Zn
48	9.5	0.25	< 0.2	< 0.2	Remainder

Mechanical and physical properties:

Working temperature:	910 °C
Melting range:	890 - 920 °C
Specific gravity:	8.7 g/cm ³
Tensile strength:	690 N/mm ²
Elongation:	15 - 20 %

Characteristics / Applications:

Nickel-bearing filler metal of high strength and good fluidity. Suitable for brazing of steel, cast iron, malleable cast iron, nickel and nickel alloys. Suitable for brazing and hardening in one production step. It is very often used in the steel furniture industry.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 100 - Series Rapidflux - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
				\boxtimes	\boxtimes	

ISO 17672	
DIN EN 1044:	
DIN 8513:	
EN ISO 3677:	

Cu 773 (modified) CU 305 (modified) L-CuNi10Zn42 + Ag B-Cu48ZnNiAg(Si)-870/900

Composition, typical analysis (% w/w):

Cu	Ni	Ag	Si	Mn	Sn	Zn
48	9.5	1	0.25	< 0.2	< 0.2	Remainder

Mechanical and physical properties:

Working temperature: Melting range: Specific gravity: Tensile strength: Elongation: 890 °C 870 - 900 °C 8.2 g/cm³ 785 N/mm² 17 - 21 %

Characteristics / Applications:

Nickel-bearing filler metal of high strength and good fluidity. Suitable for gap brazing of steel, cast iron, malleable cast iron, nickel and nickel alloys. This alloy is very well suited for butt joints.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 100 - Series Rapidflux - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
	\square	\square		\square	\square	\square

ISO 17672:	Cu 470a
DIN EN 1044:	CU 301
DIN 8513:	L-CuZn40
EN ISO 3677:	B-Cu60Zn(Si)-875/895
AWS A 5.8:	RBCuZn-A
Material-no.:	2.0367

Cu	Si	Sn	Zn
60	0.3	< 0.2	Remainder

Mechanical and physical properties:

900 °C
875 - 895 °C
8.4 g/cm ³
350 N/mm ²
35 %
15 Sm/mm ²
110 BHN

Characteristics / Applications:

Brazing alloy with good flowing properties, hardly sensitive to overheating. Suitable for gap brazing and coating of steel, cast iron, malleable cast iron, nickel and nickel alloys as well as copper and copper alloys with a solidus of > 900 °C.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 100 - Series Rapidflux - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
\square		\square		\square	\boxtimes	
13/11/JL/1						

ISO 17672:
DIN EN 1044:
DIN 8513:
EN ISO 3677:
Material-no.:

Cu 681 CU 306 L-CuZn39Sn B-Cu59ZnSn(Ni)(Mn)(Si)-870/890 2.0533

Composition, typical analysis (% w/w):

Cu	Sn	Si	Mn	Ni	Zn
59	1	0.3	0.6	0.85	Remainder

Mechanical and physical properties:

Working temperature: Melting range: Specific gravity: Tensile strength: Elongation: Hardness: 900 °C 875 - 895 °C 8.4 g/cm³ 380 - 420 N/mm² 30 % 120 BHN

Characteristics / Applications:

Particularly thin brazing alloy, insensitive to overheating for gap brazing and coating of steel, cast iron, malleable cast iron, nickel and nickel alloys, as well as copper and copper alloys with a solidus of > 900 °C. Also suitable for gap brazing of galvanised steel tubes.

Heat sources:

Acetylene torch, furnace, induction and resistance heating

Flux:

F 100 - Series Rapidflux - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
				\boxtimes		

EN ISO 3677:	B-Cu59ZnAg(Sn)(Ni)(Mn)(Si)-870/890
DIN 8513:	L-CuZn39Sn
Material-no.:	2.0533

Cu	Sn	Ag	Si	Mn	Ni	Zn
59	0.3	1	0.3	0.6	0.85	Remainder

Mechanical and physical properties:

890 °C
870 - 890 °C
8.4 g/cm ³
440 N/mm ²
30 %
100 - 125 BHN

Characteristics / Applications:

Brazing alloy with good flowing and wetting properties. Applications on galvanised steel does not lead to a destruction of the zinc-coating. For gap brazing of copper and copper alloys with a solidus of > 900 °C, steel, cast iron, malleable cast iron, galvanised steel, nickel and nickel alloys.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 100 - Series Rapidflux - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
	\square			\square	\square	\square

FONTARGEN A 211 RF

Brass brazing alloy with flux impressed in grooves

ISO 17672:				
DIN EN 1044:				
DIN 8513:				
EN ISO 3677:				
Material-no.:				

Cu 681 CU 306 L-CuZn39Sn B-Cu59ZnSn(Ni)(Mn)(Si)-870/890 2.0533

Composition, typical analysis (% w/w):

Cu	Sn	Si	Mn	Ni	Zn
59	0.3	0.3	0.6	0.85	Remainder

Mechanical and physical properties:

 Working temperature:
 890 °C

 Melting range:
 870 - 890 °C

 Specific gravity:
 8.4 g/cm³

 Tensile strength:
 440 N/mm²

 Elongation:
 30 %

 Hardness:
 100 - 125 BHN

Characteristics / Applications:

Brazing alloy with a set amount of flux. The brazing-flux combination allows simple operation procedures, outstanding flowing properties and perfect bonding to the base metal. For gap brazing and coating of copper and copper alloys with a solidus of > 900 °C, steel, cast iron, malleable cast iron, galvanised steel, nickel and nickel alloys.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 100 - Series Rapidflux - Series

Approval:

Germanischer Lloyd (G.L.)

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste

FONTARGEN A 204 Copperphosphorus alloy

ISO 17672:	CuP 182
DIN EN 1044:	CP 201
DIN 8513:	L-CuP8
EN ISO 3677:	B-Cu92P-710/770
AWS A 5.8:	BCuP-2
Material-no.:	2.1465

Composition, typical analysis (% w/w):

Cu	P
92.2	7.8

Mechanical and physical properties:

Working temperature:	720 °C
Melting range:	710 - 770 °C
Specific gravity:	8.0 g/cm ³
Tensile strength:	250 N/mm ²
Elongation:	5 %
Electrical conductivity:	3.5 Sm/mm ²

Characteristics / Applications:

Filler metal with very good flowing properties and high capillarity. Suitable for gap brazing of copper and copper alloys. Joint-brazing at working temperatures between -20 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, induction and resistance heating, TIG-torch.

Flux:

Only copper alloys require the use of flux F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\boxtimes			\square	\square

FONTARGEN A 2003 Copperphosphorus alloy

ISO 17672:	CuP 180
DIN EN 1044:	CP 202
DIN 8513:	L-Cu P 7
EN ISO 3677:	B-Cu93P-710/820
AWS A 5.8:	BCuP-2
Material-no.:	2.1463

Composition, typical analysis (% w/w):

Cu	P
93	7

Mechanical and physical properties:

Working temperature:	730 °C
Melting range:	710 - 820 °C
Specific gravity:	8.1 g/cm ³
Tensile strength:	250 N/mm ²
Elongation:	5 %

Characteristics / Applications:

Filler metal with good flowing properties and capillarity. Suitable for gap brazing of copper and copper alloys. Joint-brazing at working temperatures between -20 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, induction and resistance heating, TIG-torch.

Flux:

Only copper alloys require the use of flux F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
13/10/ 11/1		\boxtimes			\boxtimes	\square

FONTARGEN A 2004 Copperphosphorus alloy

ISO 17672:	CuP 179
DIN EN 1044:	CP 203
DIN 8513:	L-CuP6
EN ISO 3677:	B-Cu94P-710/890
Material-no.:	2.1462

Composition, typical analysis (% w/w):

Cu	P
93.8	6.2

Mechanical and physical properties:

Working temperature:	760 °C
Melting range:	710 - 890 °C
Specific gravity:	8.1 g/cm ³
Tensile strength:	250 N/mm ²
Elongation:	5 %

Characteristics / Applications:

Filler metal with good flowing properties and capillarity. Suitable for gap brazing of copper and copper alloys. Joint-brazing at working temperatures between -60 °C and +150 °C*. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, induction and resistance heating, WIG-torch.

Flux:

Only copper alloys require the use of flux F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
					\boxtimes	\boxtimes

13/10/JL/1

*Ascertained by notched flexural impact tests according to DIN EN 10045

FONTARGEN A 2005 Copperphosphorus-tin alloy

ISO 17672:	CuP 386
DIN FN 1044 [.]	CP 302
DIN 8513:	L-CuSnP7
EN ISO 3677:	B-Cu86SnP-650/700

Composition, typical analysis (% w/w):

Cu	Sn	Р
86.2	7	6.8

Mechanical and physical properties:

Working temperature:	• •	690 °C
Melting range:		650 - 700 °C
Specific gravity:		8.8 g/cm ³
Tensile strength:		250 N/mm ²

Characteristics / Applications:

Filler metal with good flowing properties and capillarity. Suitable for gap brazing of copper and copper alloys. Colour very similar to brass. Soldering seam can be easily electroplated. Joint-brazing at working temperatures between -20 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, air-gas torch, induction and resistance heating, TIG-torch.

Flux:

Only copper alloys require the use of flux F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preform	Powder	Paste
				\boxtimes	\boxtimes	\square

FONTARGEN A 2006 Copperphosphorus-tin alloy

ISO 17672:	CuP 385
EN ISO 3677:	B-Cu87PSnSi-635/675
AWS A5.8:	BCuP-9

Composition, typical analysis (% w/w):

Cu	Sn	P	Si
88.8	6.5	6.5	0.2

Mechanical and physical properties:

Working temperature:	670 °C
Melting range:	637 - 674 °C
Specific gravity:	8.8 g/cm ³

Characteristics / Applications:

Filler metal with good flowing properties and capillarity. Suitable for gap brazing of copper and copper alloys. The seam colour is silver-gray. Joint-brazing at working temperatures between -20 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, air-gas torch, induction and resistance heating, TIG-torch.

Flux:

Only copper alloys require the use of flux F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
\square						

FONTARGEN A 3002 Silver containing copper-phosphorus alloy

ISO 17672: EN ISO 3677:	CuP 279 B-Cu92PAg-645/825
DIN EN 1044:	CP 105
DIN 8513:	L-Ag2P
Material-no.:	2.1467

Composition, typical analysis (% w/w):

Ag	Cu	Р
2	91.7	6.3

Mechanical and physical properties:

Working temperature:	740 °C
Melting range:	645 - 825 °C
Specific gravity:	8.1 g/cm ³
Tensile strength:	250 N/mm ²
Elongation:	5 %
Electrical conductivity:	4 Sm/mm ²

Characteristics / Applications:

Copper-phosphorus alloy with low silver content. This alloy has good gap filling properties and is well suited to bridge wide gaps. Suitable for gap brazing of copper and copper alloys. Approved by DVGW-worksheet GW 2 for copper pipes. Joint-brazing at working temperatures between -60 °C and +150 °C*. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, induction and resistance heating, TIG-torch.

Flux:

Only copper alloys require the use of flux F 300 - Series

Approval:

DVGW-Worksheet GW 2

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
13/10/ 11/1		\square		\boxtimes	\boxtimes	\square

*Acertained by notched flexural impact tests according to DIN EN 10045

FONTARGEN A 3005 Silver containing copper-phosphorus alloy

ISO 17672: EN ISO 3677:	CuP 281 B-Cu89PAg-645/815
DIN EN 1044:	CP 104
DIN 8513:	L-Ag5P
AWS A 5.8:	BCuP-3
Material-no.:	2.1466

Composition, typical analysis (% w/w):

Ag	Cu	Р
5	89	6

Mechanical and physical properties:

Working temperature:	710 °C
Melting range:	645 - 815 °C
Specific gravity:	8.2 g/cm ³
Tensile strength:	250 N/mm ²
Elongation:	8 %
Electrical conductivity:	5 Sm/mm ²

Characteristics / Applications:

Copper-phosphorus alloy with low silver content, good flowing properties and high ductility. Suitable for gap brazing of copper and copper alloys. Joint-brazing at working temperatures between -60 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, induction and resistance heating, TIG-torch.

Flux:

Only copper alloys require the use of flux F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square		\boxtimes	\boxtimes	\boxtimes

FONTARGEN A 3015 Copper-phosphorus alloy with high silver content

EN ISO 17672: DIN EN 1044:	CuP 284 CP 102
DIN 8513:	L-Ag15P
EN ISO 3677:	B-Cu80AgP-645/800
AWS A 5.8:	BCuP-5
Material-no.:	2.1210

Composition, typical analysis (% w/w):

Ag	Cu	Р
15	80	5

Mechanical and physical properties:

Working temperature:	700 °C
Melting range:	645 - 800 °C
Specific gravity:	8.4 g/cm ³
Tensile strength:	250 N/mm ²
Elongation:	10 %
Electrical conductivity:	7 Sm/mm²

Characteristics / Applications:

Thin fluid copper-phosphorus alloy with high silver content and high ductility, even at low temperatures. Suitable for gap brazing of copper and copper alloys. Recommended for joints with strong thermal load and vibrations. Jointbrazing at working temperatures between -70 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, induction and resistance heating, TIG-torch.

Flux:

Only copper alloys require the use of flux F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square		\square	\boxtimes	\square

FONTARGEN A 3018 Copper-phosphorus alloy with high silver content

EN ISO 17672:	CuP 285
DIN 8513:	L-Ag18P
EN ISO 3677:	B-Cu75AgP-645
AWS/ASME/SFA-5.8:	BCuP-8

Composition, typical analysis (% w/w):

Ag	Cu	Р
18	75	6,5

Mechanical and physical properties:

Working temperature:	 670 °C
Melting range:	643-666°C
Specific gravity:	8.7 g/cm ³
Tensile strength:	250 N/mm ²
Elongation:	> 10 %

Characteristics / Applications:

Thin fluid copper-phosphorus allow with high silver content and high ductility. even at low temperatures. Suitable for gap brazing of copper and copper alloys. Recommended for joints with strong thermal load and vibrations. Jointbrazing at working temperatures between -70 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heatsources:

Acetylene torch, air-gas torch, furnace, induction and resistance heating, TIGtorch.

Flux:

Only copper alloys require the use of flux F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
13/10/ 11/2		\square		\square	\boxtimes	\square

DIN EN 1044:	AG 206
DIN 8513:	L-Ag20
EN ISO 3677:	B-Cu44ZnAg(Si)-690/810

Ag	Cu	Zn
20	44	36

Mechanical and physical properties:

Working temperature:	810 °C
Melting range:	690 - 810 °C
Specific gravity:	8.7 g/cm ³
Tensile strength:	380 - 450 N/mm ²
Elongation:	25 %
Electrical conductivity:	10.6 Sm/mm ²
Hardness:	125 BHN

Characteristics / Applications:

Silver-bearing, cadmium-free brazing alloy insensitive to overheating for gap and joint brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys and carbides. Perfect colour match with brass. The silicon contained in the brazing filler metal can reduce the mechanical property values of welded carbon steels. For brazing joints at working temperatures of max. 300 °C.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
	\square			\boxtimes		

ISO 17672:	Ag 272 ^ª
DIN EN 1044:	AG 401
DIN 8513:	L-Ag72
EN ISO 3677:	B-Ag72Cu-780
AWS A 5.8:	BAg-8

competence, typical analysis (//	
Ag	Cu
72	28

Mechanical and physical properties:

Working temperature:	780 °C
Melting range:	779 °C (Eutectic)
Specific gravity:	10 g/cm ³
Tensile strength:	340 - 390 N/mm ²
Elongation:	17 %
Electrical conductivity:	46.1 Sm/mm ²

Characteristics / Applications:

Zinc- and cadmium free alloy with good flowing properties for gap brazing in vacuum and for vacuum-sealed joints of alloyed and unalloyed steel, nickel and nickel alloys. Very good vacuum durability even at high temperatures. Also suitable for joints of copper and copper alloys. The brazing alloy is coalesced in vacuum with a minimum purity of 99.9 %.

Heat sources:

Vacuum furnace, inert gas furnace, acetylene torch, induction and resistance heating, TIG-torch

Flux:

F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
12/10/11/1		\square	\boxtimes	\boxtimes	\boxtimes	\square

ISO 17672:	Ag 244
DIN EN 1044:	AG 203
DIN 8513:	L-Ag44
EN ISO 3677:	B-Ag44CuZn-675/735
AWS A 5.8:	BAg-5

Ag	Ču	Zn
44	30	26

Mechanical and physical properties:

730 °C
675 - 735 °C
9.1 g/cm ³
400 - 480 N/mm ²
25 %
11.2 Sm/mm ²

Characteristics / Applications:

Cadmium free brazing alloy with good fluidity and capillary flow characteristics. For gap and joint brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys and carbides. Approval: Marine code VG 81245, section 3. Also suitable for copper pipe installation according to DVGW work certificate GW 2. For brazing joints with a working temperature of max. 300 °C.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series

Approval:

Marine code VG 81245, section 3 DVGW work certificate GW 2

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square	\boxtimes	\boxtimes		

EN ISO 3677:

B-Ag49ZnCuMnNi-680/705

Composition, typical analysis (% w/w):

Ag	Zn	Ni	Mn	Cu
49	20.5	0.5	2.5	27.5

Composition refers to the different solder coats

Mechanical and physical properties:

Working temperature:	690 °C
Melting range:	680 - 705 °C
Specific gravity:	9.0 g/cm ³
Shear strength:	150 - 300 N/mm²
	(depends on Co-content of metal)
Elongation:	35 %

Characteristics / Applications:

Copper foil coated with silver brazing filler metal on both sides for the joining of hard metals and carrier steel. The foil is build-up with a ratio 1:2:1. The copper which does not melt during the brazing process relieves the stress that occurs during brazing due to the difference in coefficients of expansion of the hard metal layer and the carrier steel. Compared to A 324, A 312 F has a lower manganese- and nickel content.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series, particularly recommendable: F 300 HF Ultra

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
			\boxtimes			

ISO 17672: DIN EN 1044:	Ag 155 AG 103 L-Aq55Sn						
DIN 8513: EN ISO 3677:			looon 155ZnCuSn∙	620/660			
Material-no.:		2.51	,	-030/000			
Composition, typic	cal analy	sis (% w/v	v):				
Ag	Zn		Cu	Sn			
55	22 21 2						
Mechanical and ph	nysical p	roperties:					
Working temperatur	e:	650	650 °C				
Melting range:		630	630 - 660 °C				
Specific gravity:		9.4 g	9.4 g/cm ³				
Tensile strength:		330	330 - 430 N/mm²				
Elongation:	25 %						
Electrical conductivity:		7 Sn	7 Sm/mm²				
Hardness:		110	110 BHN				

Characteristics / Applications:

Silver-bearing, cadmium-free low melting brazing alloy, insensitive to overheating for gap and joint brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys and carbides. Brazing stainless steel provides the best possible colour match. Suitable for brazing joints which will be used in seawater according to marine code VG 81245, section 3. The absence of cadmium makes it especially suitable for joints destined to come in contact with food. The silicon contained in the brazing alloy can reduce the mechanical property values of welded carbon steels. For brazing joints with a working temperature of max. 200 °C.

Heat sources:

Acetylene torch, air-gas torch, induction and resistance heating

Flux:

F 300 - Series

Approval:

Marine code VG 81245, section 3

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square	\boxtimes	\boxtimes	\square	\square

ISO 17672:	Ag 160
DIN EN 1044:	AĞ 402
EN ISO 3677:	B-Ag60CuSn-600/720
AWS A 5.8:	BAg-18
AMS:	4773 F

	, ,		
Ag	Cu	Sn	
60	30	10	

Mechanical and physical properties:

Working temperature:	720 °C
Melting range:	602 - 718 °C
Specific gravity:	9.8 g/cm ³
Tensile strength:	390 - 460 N/mm ²
Elongation:	35 %
Electrical conductivity:	8.7 Sm/mm ²

Characteristics / Applications:

Zinc- and cadmium free silver brazing alloy, low vacuum-resistant for gap brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys. Excellent in reducing atmospheres since no contamination of the furnace can occur through the evaporation of the contents of the alloy. Particularly well suited for brazing on supply circuits in aircraft constructions.

Heat sources:

Acetylene torch, air-gas torch, induction and resistance heating, inert-gas furnace, vacuum furnace

Flux:

F 300 - Series \rightarrow Choose the flux depending on the base material

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square		\square	\square	\square

ISO 17672:	Ag 134
DIN EN 1044:	AG 106
DIN 8513:	L-Ag34Sn
EN ISO 3677:	B-Cu36AgZnSn-630/730

Ag	Cu	Zn	Sn	Si
34	36	27.5	2.5	0.15

Mechanical and physical properties:

Working temperature:	710 °C
Melting range:	630 - 730 °C
Specific gravity:	9 g/cm ³
Tensile strength:	360 - 480 N/mm ²
Elongation:	12 %
Electrical conductivity:	14 Sm/mm ²

Characteristics / Applications:

Cadmium free brazing alloy for gap brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys. Suitable for the copper pipe installation according to DVGW work certificate GW 2. The silicon contained in the brazing alloy can reduce the mechanical property values of welded carbon steels. Joint-brazing at working temperatures of -200 °C on austenitic and -70 °C on ferritic steels as well as up until +200 °C.

Heat sources:

Acetylene torch, air-gas torch, induction and resistance heating

Flux:

F 300 - Series

Approval:

DVGW work certificate GW 2

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
	\square	\square	\boxtimes	\square		

ISO 17672:	Ag 145
DIN EN 1044:	AG 104
DIN 8513:	L-Ag45Sn
EN ISO 3677:	B-Ag45CuZnSn-640/680
AWS A 5.8:	BAg-36

Ag	Cu	Zn	Sn
45	27	25.5	2.5

Mechanical and physical properties:

Working temperature:	670 °C
Melting range:	640 - 680 °C
Specific gravity:	9.2 g/cm ³
Tensile strength:	350 - 430 N/mm ²
Elongation:	12 %
Electrical conductivity:	13 Sm/mm ²

Characteristics / Applications:

Cadmium free brazing alloy for gap brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys. Approval: Marine code VG 81245, section 3. Also suitable for the copper pipe installation according to DVGW work certificate GW 2. The silicon contained in the brazing alloy can reduce the mechanical property values of welded carbon steels. Joint-brazing at working temperatures of max 200 °C.

Heat sources:

Acetylene torch, air-gas torch, induction and resistance heating

Flux:

F 300 - Series

Approval:

DVGW work certificate GW 2 Marine code VG 81245, section 3

Availability:

	Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
13/10/11/1	\boxtimes	\square	\square	\boxtimes	\boxtimes	\boxtimes	\square

ISO 17672:	Ag 449
DIN EN 1044:	AG 502
DIN 8513:	L-Ag49
EN ISO 3677:	B-Ag49ZnCuMnNi-680/705
AWS A 5.8:	BAg-22
0	4

Ag	Zn	Cu	Mn	Ni
49	23	16	7.5	4.5

Mechanical and physical properties:

Working temperature:	690 °C
Melting range:	680 - 705 °C
Specific gravity:	8.9 g/cm ³
Shear strength:	250 - 300 N/mm ²
-	(depends on Co-content of hard metals)
Electrical conductivity:	4 Sm/mm ²

Characteristics / Applications:

Nickel- and manganese-bearing silver brazing alloy with very good wetting properties on steel and hard metals, therefore ensuring very tough joints. Gap brazing of hard metals in combination with steel, tungsten, tantalum and molybdenum materials.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series, particularly recommendable: F 300 HF Ultra

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
\square			\boxtimes	\boxtimes		

ISO 17672:	Ag 230
DIN EN 1044:	AG 204
DIN 8513:	L-Ag 30
EN ISO 3677:	B-Cu38ZnAg-680/765
AWS A 5.8:	BAg-20

Ag	Cu	Zn
30	38	32

Mechanical and physical properties:

Working temperature:	750 °C
Melting range:	680 - 765 °C
Specific gravity:	8.9 g/cm ³
Tensile strength:	380 - 430 N/mm ²
Elongation:	25 %

Characteristics / Applications:

Silver alloy, cadmium free, insensitive to overheating. Gap brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys. Good colour match with brass. Joint-brazing at working temperatures of max. 300 °C.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
				\boxtimes	\boxtimes	\square

ISO 17672:	Ag 225
DIN EN 1044:	AG 205
DIN 8513:	L-Ag25
EN ISO 3677:	B-Cu40ZnAg-700/790

Ag	Cu	Zn
25	40	35

Mechanical and physical properties:

780 °C
700 - 790 °C
8.8 g/cm ³
380 - 430 N/mm ²
25 %

Characteristics / Applications:

Silver alloy, cadmium free, insensitive to overheating. Gap brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys. Good colour match with brass. Joint-brazing at working temperatures of max. 300 °C.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
				\boxtimes		

ISO 17672:	Ag 130
DIN EN 1044:	AG 107
DIN 8513:	L-Ag30Sn
EN ISO 3677:	B-Cu36ZnAgSn-665/755

Ag	Cu	Zn	Sn	Si
30	36	32	2	0.15

Mechanical and physical properties:

Working temperature:	740 °C
Melting range:	665 - 755 °C
Specific gravity:	8.8 g/cm ³
Tensile strength:	360 - 480 N/mm ²
Hardness:	140 BHN

Characteristics / Applications:

Silver alloy, cadmium free, insensitive to overheating. Gap brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys. Joint-brazing at working temperatures of max. 300 °C.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square		\boxtimes		

DIN EN 17672: ISO 3677: (*) Acc. To Norm classification in progress B-Cu36AgZnNi-676/788 (*)

Composition, typical analysis (% w/w):

Ag	Cu	Zn	Ni
30	36	Rest	2

Mechanical and physical properties:

Melting range:
Specific gravity:
Notch impact energy:

676 – 788°C 9,17 g/cm³ (Metal content)

138J (-75°C until +100°C)

Characteristics / Applications:

Cadmium free, intermediate temperature brazing alloy with good wetting and mechanical properties. Suitable for ferrous and nonferrous base materials. Can be used for the brazing of carbide tools.

Heat sources:

Flame, induction, resistance

Flux:

F 300 – Serie	FH10 (EN 1045)
	FH12 (EN 1045)

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
\square				\boxtimes		

EN ISO 3677:

B-Ag38 ZnCuMnNi-680/700

Composition, typical analysis (% w/w):

Ag	Zn	Cu	Mn	Ni
38	Balance	26,0	7.2	3.5

Mechanical and physical properties:

Working temperature: Melting range: Specific gravity: Tensile strength: 700 °C 680 - 700 °C 8.8 g/cm³ 525,0 N/mm²

Characteristics / Applications:

Nickel- and manganese-bearing silver brazing alloy with very good wetting properties on steel and hard metals, therefore ensuring very tough joints. Gap brazing of hard metals in combination with steel, tungsten, tantalum and molybdenum materials.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series, particularly recommendable: F 300 HF Ultra

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
				\square		

13/11/JL/2

EN ISO 3677:

B-Ag38ZnCuMnNi-680/700

Composition, typical analysis (% w/w):

Ag	Zn	Ni	Mn	Cu
38,0	Balance	7,0	3.5	26.5

Composition refers to the different solder coats

Mechanical and physical properties:

Working temperature:	700 °C
Melting range:	680 - 700 °C
Specific gravity:	8,8 g/cm ³

Characteristics / Applications:

Copper foil coated with silver brazing filler metal on both sides for the joining of hard metals and carrier steel. The foil is build-up with a ratio 1:2:1. The copper which does not melt during the brazing process relieves the stress that occurs during brazing due to the difference in coefficients of expansion of the hard metal layer and the carrier steel. Compared to A 312 F has a lower silver content.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series, particularly recommendable: F 300 HF Ultra

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
12/11/11/2			\boxtimes			

13/11/JL/2

ISO 17672:	Ag 140
DIN EN 1044:	AG 105
DIN 8513:	L-Ag40Sn
EN ISO 3677:	B-Ag40CuZnSn-650/710

Ag	Cu	Zn	Sn	Si
40	30	28	2	0.15

Mechanical and physical properties:

Working temperature:	690 °C
Melting range:	650 - 710 °C
Specific gravity:	9.1 g/cm ³
Tensile strength:	350 - 430 N/mm ²
Elongation:	20 %
Electrical conductivity:	14 Sm/mm ²
Hardness:	130 BHN

Characteristics / Applications:

Silver alloy, cadmium free, insensitive to overheating. Gap brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys and carbides. Seawater resistant, according to marine standard VG 82145, part 3. Silicon can reduce the mechanical properties of carbon steel. Joint-brazing at working temperatures of max. 200 °C.

Heat sources:

Acetylene torch, air-gas torch, induction and resistance heating

Flux:

F 300 - Series

Approval:

Marine Standard VG 81245, Part 3

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
			\boxtimes	\boxtimes		

ISO 17672:	Ag '	156	
DIN EN 1044:	AĞ	102	
AWS A 5.8:	BAC	G-7	
DIN 8513:	L-A	q56Sn	
EN ISO 3677:	B-A	g56ZnCuSn-620/655	5
Composition, typic	cal analysis (% w/	w):	
Ag	Zn	Cu	Sn
56	17	22	5

Mechanical and physical properties:

Working temperature:	650 °C
Melting range:	620 - 655 °C
Specific gravity:	9.5 g/cm ³
Tensile strength:	350 - 430 N/mm ²
Elongation:	25 %
Electrical conductivity:	7 Sm/mm ²

Characteristics / Applications:

Silver-bearing, cadmium-free low melting brazing alloy, insensitive to overheating for gap and joint brazing of alloyed and unalloyed steel, nickel, nickel alloys and malleable iron as well as the corresponding metals amongst each other. Brazing stainless steel provides the best possible colour match. The absence of cadmium makes it especially suitable for joints destined to come in contact with food. For applications with service temperatures until 200°C suitable.

Heat sources:

Acetylene torch, air-gas torch, induction and resistance heating

Flux:

F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square	\boxtimes	\square	\square	\square

ISO 17672:	Ag 450
EN ISO 3677:	B-Ag50ZnCuNi-660/705
AWS A 5.8:	BAg-24

1			/	
	Ag	Zn	Cu	Ni
	50	28	20	2

Mechanical and physical properties:

Working temperature:	 690 °C
Melting range:	660 - 705 °C
Specific gravity:	9.2 g/cm ³

Characteristics / Applications:

Nickel bearing silver brazing alloy with very good wetting properties on steel and hard metals, therefore ensuring very tough joints. Gap brazing of hard metals in combination with steel, tungsten, tantalum and molybdenum materials.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series, particularly recommendable: F 300 HF Ultra

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
\square		\boxtimes				

DIN 85 EN ISC	 :			E
-				

L-Ag72Zn B-Ag72Zn-710/730

Composition, typical analysis (% w/v	v):
Ag	Zn
72	28

Mechanical and physical properties:

Working temperature:	730 °C
Melting range:	710 - 730 °C
Specific gravity:	9.8 g/cm ³

Characteristics / Applications:

Corrosion-resistant, copper free silver brazing alloy for joints of alloyed and unalloyed steel. The brazing seam is suited for ammonia in liquid or vapour form. This brazing alloy is mostly used in the heating and cooling industry.

Heat sources:

Acetylene torch, induction and resistance heating

Flux:

F 300 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
			\boxtimes	\square		

FONTARGEN A 407 L Aluminium brazing alloy

EN ISO 17672:	AI 112
DIN EN 1044:	AL 104
DIN 8513:	L-AISi12
EN ISO 3677:	B-Al88Si-575/585
AWS A 5.8:	BAISi-4
Material-no.:	3.2285

Composition, typical analysis (% w/w):

Al	Si
88	12

Mechanical and physical properties:

Working temperature:		590 °C
Melting range:		575 - 585 °C
Specific gravity:		2.7 g/cm ³
Tensile strength:		100 N/mm ²

Characteristics / Applications:

Capillary active brazing alloy for structure matching and tonal joints of aluminium and rolled / cast aluminium alloys. The Mg-content must be ≤ 3 %. The solidus temperature should be ≥ 630 °C. Not suitable for joints that are to be eloxadized. This brazing alloy is also suited for joints of aluminium with Cr-Ni-steel.

Heat sources:

Inert gas- and vacuum furnace, induction and resistance heating, acetylene torch

Flux:

F 400 - Series

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square	\boxtimes	\boxtimes	\boxtimes	\square

Alloy	
EN ISO 17672:	AI 112
DIN EN 1044:	AL 104
DIN 8513:	L-AISi12
EN ISO 3677:	B-Al88Si-575/585
AWS A 5.8:	BAISi-4
Flux	
DIN EN 1045:	FL 20
Composition, typical analysis (% w/w):
AI	Si
88	12
Mechanical and physical prope	rties:

Mechanical and physical properties:

Working temperature:	590 °C
Melting range:	575 - 585 °C
Specific gravity:	2.7 g/cm ³
Tensile strength:	100 N/mm ²

Characteristics / Applications:

Capillary active flux cored brazing alloy for structure matching and tonal joints of aluminium and rolled / cast aluminium alloys. The Mg-content must be ≤ 3 %. The solidus temperature should be > 630 °C. Not suitable for joints that are to be eloxadized. This brazing alloy is also suited for joints of aluminium with Cr-Ni-steel. The flux residues can remain on the assembly. The brazing joint must be kept dry.

Heat sources:

Induction, Flame

Flux:

FL 20 - Non corrosive

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
				\square		

FONTARGEN AP 210

Brass brazing paste

EN ISO 3677:

B-Cu55Zn(Si)(Mn)-875/890

fontargen brazing

Composition, typical analysis (% w/w):

Cu	Si	Mn	Zn
55	0.2	0.2	Remainder

Mechanical and physical properties:

Working temperature:900 °CMelting range:875 - 890 °C

Characteristics / Applications:

Dispensable brass brazing paste. The Si-content improves the wetting and flowing properties. AP 210 is a low cost product for brazing of steel under a normal atmosphere. AP 210 can also be used for the brazing of hard metals. Typical applications are the tooling (drills) and electro-industry as well as car manufacturing.

Heat sources:

Flame and induction

Flux:

The content of our binders can be altered according to your application depending on (heat source, atmosphere, geometry of the brazing assembly etc.). We can offer flux free and flux containing binder systems. The powder characteristics can be adapted (Metal content of the paste, grain size, geometry). Our application technicians will be pleased to assist you in choosing the appropriate product.

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm

Availability:

On request

Pots	Cartridges

EN ISO 3677: DIN 8513:

B-Cu59ZnAg(Sn)(Ni)(Mn)(Si)-850/870 L-CuZn39Sn

Composition, typical analysis (% w/w):

Cu	Sn	Ag	Si	Mn	Ni	Zn
59	0.3	1	0.3	0.6	0.85	Remainder

Mechanical and physical properties:

Working temperature:	890 °C
Melting range:	850 - 870 °C
Specific weight:	8.4 g/cm3 (Metal content)

Characteristics / Applications:

Dispensable brass brazing paste with very good flowing and wetting properties. Suitable for the brazing of hard metal with steel. Gap and joint brazing of copper and copper alloys with a solidus of > 900 °C, nickel and nickel alloys, steel, cast iron, malleable iron, zinc coated steel (no destruction of the zinc layer).

Heat sources:

Flame, induction and resistance heating

Flux:

The content of our binders can be altered according to your application depending on (heat source, atmosphere, geometry of the brazing assembly etc.). We can offer flux free and flux containing binder systems. The powder characteristics can be adapted (Metal content of the paste, grain size, geometry). Our application technicians will be pleased to assist you in choosing the appropriate product.

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm

Availability:

On request

Pots	Cartridges
	\square

FONTARGEN AP 218 Brass brazing paste

EN ISO 3677:

B-Cu51Zn(Si)-870/915

Composition, analysis (% w/w):

Cu	Sn	Zn
51.8	0.2	Remainder

Mechanical and physical properties:

Working temperature:925 °CMelting range:870 - 915 °C

Characteristics / Applications:

Dispensable brass brazing paste with good flowing and wetting properties. Gap and joint brazing of copper and copper alloys with solidus > 900 °C, steel and hard metal.

Heat source:

Flame, induction and resistance heating

Flux:

The content of our binders can be altered according to your application depending on (heat source, atmosphere, geometry of the brazing assembly etc.). We can offer flux free and flux containing binder systems. The powder characteristics can be adapted (Metal content of the paste, grain size, geometry). Our application technicians will be pleased to assist you in choosing the appropriate product.

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm

Availability:

On request

Pots	Cartridges
	\square

ISO 17672:	CuP 180
DIN EN 1044:	CP 202
EN ISO 3677:	B-Cu93P-710/820
DIN 8513:	L-CuP7

Cu	P
93	7

Mechanical and physical properties:

Working temperature:	•	730 °C
Melting range:		710 - 820 °C
Specific gravity:		8.1 g/cm ³ (Metal content)

Characteristics / Applications:

Filler metal with good flowing properties and capillarity. The AP 2003 is suitable for gap brazing of copper and copper alloys. For joints with a working temperature between -20 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, air-gas torch, furnace, induction and resistance heating.

Flux:

None - For copper applications there is no need of flux

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges

Availability:

On request

Pots	Cartridges
	\boxtimes

ISO 17672:	CuP 179
DIN EN 1044:	CP 203
DIN 8513:	L-CuP6

Р	Cu
6.2	Remainder

Mechanical and physical properties:

Working temperature:	760 °C
Melting range:	710 - 890 °C
Specific gravity:	8.1 g/cm ³ (Metal content)

Mechanical and physical properties:

Capillary brazing on copper, brass, bronze and red brass. For joints with operating temperatures between -20 °C up to +150 °C. Do not use on assemblies that come in contact with sulphide substances and on Fe and/or Ni based alloys.

Heat sources:

Oxy-acetylene torch, air torch, furnace, induction, resistance.

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm

Availability:

On request

Pots	Cartridges

ISO 17672:	CuP 386
DIN EN 1044:	CP 302
DIN 8513:	L-CuSnP7
EN ISO 3677:	B-Cu86SnP-650/700

Cu	Sn	Р
86.2	7	6.8

Mechanical and physical properties:

Working temperature:	690 °C
Melting range:	650 - 700 °C
Specific gravity:	8.8 g/cm ³ (Metal content)

Characteristics / Applications:

Filler metal with good flowing properties and capillarity. Suitable for gap brazing of copper and copper alloys. High colour similarity with brass. Easy electroplating of the soldering seam. For brazing joints with working temperatures between -20 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, air-gas torch, furnace, induction and resistance heating.

Flux:

None - For copper applications there is no need of flux

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges

Availability:

On request

Pots	Cartridges

FONTARGEN AP 3018

Copper-phosphorus paste with high silver content

CuP 286
CP 101
L-Ag18P
B-Cu75AgP-645

Composition, typical analysis (% w/w):

Ag	Cu	P
18	75	7

Mechanical and physical properties:

Working temperature:	•	650 °C
Melting range:		645 °C (Eutectic)
Specific gravity:		8.7 g/cm ³ (Metal content)

Characteristics / Applications:

AP 3018 is a thin fluid copper-phosphorus alloy with high silver content and high ductility, even at low temperatures. It is suitable for gap brazing of copper and copper alloys. It is recommended for joints with strong thermal load and vibrations and for brazing joints with working temperatures between -70 °C and +150 °C. Do not use in sulphurous environment and on Fe- and Ni-alloys.

Heat sources:

Acetylene torch, air-gas torch, furnace, induction and resistance heating.

Flux:

None - For copper applications there is no need of flux.

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm

Availability:

On request

Pots	Cartridges
	\square

Silver-Copper-Eutectic	paste for vacuum	brazing
------------------------	------------------	---------

ISO 17672:	Ag 272 ^ª
DIN EN 1044:	AG 401
DIN 8513:	L-Ag72
EN ISO 3677:	B-Ag72Cu-780
AWS A 5.8:	BAg-8

Ag	Cu
72	28

Mechanical and physical properties:

780 °C
779 °C (Eutectic)
10 g/cm ³ (Metal content)
46.1 Sm/mm²

Characteristics / Applications:

Zinc- and cadmium free alloy with good flowing properties for gap brazing in vacuum and for vacuum-sealed joints of alloyed and unalloyed steel, nickel and nickel alloys. Very good vacuum durability even at high temperatures. Also suitable for joints of copper and copper alloys. The brazing alloy is coalesced in vacuum with a minimum purity of 99.9 %.

Heat sources:

Vacuum furnace

Flux:

None

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm.

Availability:

On request

Pots	Cartridges
	\square

ISO 17672:	Ag 156
DIN EN 1044:	AG 102
DIN 8513:	L-Ag55Sn
EN ISO 3677:	B-Ag56CuZnSn-620/655

Ag	Cu	Zn	Sn
56	22	17	5

Mechanical and physical properties:

Working temperature:	660 °C
Melting range:	620 - 655 °C
Specific gravity:	9.4 g/cm ³
Electrical conductivity:	7 Sm/mm ²

Characteristics / Applications:

Cadmium-free low melting silver brazing alloy for gap and joint brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys and carbides. Brazing stainless steel produces the best possible colour match. The paste is suitable for brazing joints used in seawater according to marine code VG 81245, section 3. The absence of cadmium makes it especially suitable for joints destined to come in contact with food. For brazing joints with a working temperature of max. 200 °C.

Heat sources:

Oxy-acetylene torch, induction, resistance

Flux:

The content of our binders can be altered according to your application depending on (heat source, atmosphere, geometry of the brazing assembly etc.). We can offer flux free and flux containing binder systems. The powder characteristics can be adapted (Metal content of the paste, grain size, geometry). Our application technicians will be pleased to assist you in choosing the appropriate product.

Approval:

Marine code VG 81245, section 3

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm.

Availability: On request

Pots	Cartridges

ISO 17672:	Ag 160
DIN EN 1044:	AG 402
EN ISO 3677:	B-Ag60CuSn-600/730
AWS A 5.8:	BAg-18
AMS:	4773 F

Ag	Cu	Sn
60	30	10

Mechanical and physical properties:

Working temperature:	740 °C
Melting range:	600 - 730 °C
Specific gravity:	9.8 g/cm ³ (Metal content)
Electrical conductivity:	8.7 Sm/mm ²

Characteristics / Applications:

Zinc- and cadmium-free silver brazing alloy, low vacuum-resistant. For gap brazing of alloyed and unalloyed steel, nickel and nickel alloys, malleable cast iron, copper and copper alloys. Excellent in reducing atmospheres since no contamination of the furnace can occur through the evaporation of the contents of the alloy. The paste is particularly suitable for brazing at supply circuits in aircraft construction.

Heat sources:

Oxy-acetylene torch, induction, furnace, vacuum.

Flux:

The content of our binders can be altered according to your application depending on (heat source, atmosphere, geometry of the brazing assembly etc.). We can offer flux free and flux containing binder systems. The powder characteristics can be adapted (Metal content of the paste, grain size, geometry). Our application technicians will be pleased to assist you in choosing the appropriate product.

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm.

Availability:

On request

Pots	Cartridges
	\square

ISO 17672:	Ag 450
EN ISO 3677:	B-Ag50ZnCuNi-660/705
AWS A 5.8:	BAg-24
AMS:	4788

Ag	Cu	Zn	Ni
50	20	28	2

Mechanical and physical properties:

Working temperature:	•	·	670 °C
Melting range:			660 - 705 °C
Specific gravity:			9.17 g/cm ³ (Metal content)

Characteristics / Applications:

Low melting cadmium free silver brazing paste with good wetting and excellent mechanical properties. Suitable for the brazing of hard metals with steel, tungsten, tantalum and molybdenum materials. The alloy is used in the tooling industry and on stainless steel food handling equipment with close joint clearance. For brazing joints operating at temperatures up to 200 °C, respectively up to 150 °C continuous operating temperature.

Heat sources:

Oxy-acetylene torch, induction, resistance

Flux:

The content of our binders can be altered according to your application depending on (heat source, atmosphere, geometry of the brazing assembly etc.). We can offer flux free and flux containing binder systems. The powder characteristics can be adapted (Metal content of the paste, grain size, geometry). Our application technicians will be pleased to assist you in choosing the appropriate product.

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm.

Availability:

On request

Pots	Cartridges
	\boxtimes

EN ISO 3677:

B-Ag64CuInMnNi-730/780

Composition, typical analysis (% w/w):

Ag	Cu	In	Mn	Ni
64	26	6	2	2

Mechanical and physical properties:

Working temperature:	770 °C
Melting range:	730 - 780 °C
Density (metal powder):	9.6 g/cm ³
Service temperature:	max. 200 °C (w/out strength loss)

Characteristics / Applications:

Low melting and high silver containing brazing alloy with good flowing characteristics. The alloy is suitable for the brazing of nickel and nickel based alloys, cemented carbides and materials that are difficult to wet such as tungsten, tantalum, chromium and molybdenum. The strength of the joint depends mainly on the base metals characteristics. Typical applications can be found in the tooling industry. TiN-coating is possible.

Heat sources:

Induction, flame

Flux:

The content of our binders can be altered according to your application depending on (heat source, atmosphere, geometry of the brazing assembly etc.). We can offer flux free and flux containing binder systems. The powder characteristics can be adapted (Metal content of the paste, grain size, geometry). Our application technicians will be pleased to assist you in choosing the appropriate product.

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm.

Availability:

On request

Pots	Cartridges	
	\boxtimes	

FONTARGEN AP 47 QL/2 Aluminium brazing paste

	EN ISO 17672:	AI 112		
	DIN EN 1044:	AL 104		
	DIN 8513:	L-AISi12		
	EN ISO 3677:	B-Al88Si-575/585		
	AWS A 5.8:	BAISi-4		
Composition, typical analysis (% w/w):				
	AI	Si		
	88	12		

Mechanical and physical properties:

Working temperature:	590 °C
Melting range:	575 - 585 °C
Specific gravity:	2.7 g/cm ³ (Metal content)

Characteristics / Applications:

Capillary active brazing alloy for structure matching and tonal joints of aluminium and rolled / cast aluminium alloys. The Mg-content must be ≤ 0.7 %. The solidus temperature should be > 630 °C. Not suitable for joints that are to be eloxadized. This brazing alloy is also suited for joints of aluminium with Cr-Ni-steel. The flux residues can be left on the assembly. The brazed joints must be protected against wetness.

Heat sources:

Inert gas furnace (N2, cracked ammonia), acetylene torch (indirect heating)

Flux:

F-LH 2 according to DIN 8511 FL 20 according to DIN EN 1045

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots

Availability:

On request

Pots	Cartridges
\boxtimes	

DIN EN ISO 3677:

S-Sn60Zn40

Composition, typical analysis (% w/w):

Sn	Zn
60	Remainder

Mechanical and physical properties:

Melting range:	• •	200 - 340 °C
Hardness (BHN):		19 HB
Electrical conductivity:		22.2 Sm/mm ²
Copper:		100 N/mm ²
Brass:		90 N/mm ²
Steel:		90 N/mm ²
Specific gravity:		7.1 g/cm ³

Characteristics / Applications:

Lead-free friction solder, on aluminium without flux. Build-up possible. Stepby-step solder (first solder). Sealing of blowholes and cracks on cast iron and cast aluminium, repairs on zinc injection moulded parts, filling-up of dents in aluminium plates. Car body workshops, aluminium foundries, repair shops, etc.

Heat sources:

Acetylene torch (fuel gas excess), air-gas torch, soldering lamp, soldering iron.

Flux:

F 600 AI

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste

FONTARGEN A 604 KA

Friction solder, build-up soldering (lead-free)

fontargen brazing

DIN EN ISO 3677:

S-Sn90Zn7Cu3

Composition, typical analysis (% w/w):

Zn	Cu	Sn
7	3	Remainder

Mechanical and physical properties:

Melting range:	200 - 250 °C
Hardness (BHN):	16 HB
Electrical conductivity:	22.6 Sm/mm ²
Specific gravity:	7.3 g/cm ³

Characteristics / Applications:

Step-by-step solder (first solder). Sealing of blowholes and cracks on cast iron and cast aluminium, repairs on zinc injection moulded parts, filling-up of dents in aluminium plates. Auto body workshops, aluminium foundries, repair shops, etc.

In application to steel auto bodies like the correction of detriments and cracks, AP 644/12 must be applied beforehand (also see FONTARGEN work assembly auto body solder).

Friction solder, on aluminium without flux. Build-up possible. A 604 KA is an enhancement of A 604.

Heat sources:

Acetylene torch (fuel gas excess), air-gas torch, soldering lamp, soldering lron

Flux:

F 600 AI

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
\boxtimes						

FONTARGEN A 611 Silverbearing, lead-free solder

EN ISO 9453:	S-Sn96Ag4 / Alloy-no. 701
A 611	Blank wire
AF611 F-SW 26	Cored wire with DIN EN 29454.1 (Flux) :
	1.1.2 (non corrosive flux, colophony base)
AF 611 F-SW 12	Cored wire with DIN EN 29454.1 (Flux) :
	3.1.1 (corrosive flux)

Composition, typical analysis (% w/w):

Ag	Sn
3.5	Remainder

Mechanical and physical properties:

Melting range:	221 - 230 °C
Tensile strength (solder):	44 N/mm ²
On Ms 58:	53 N/mm ²
Shear strength on Cu:	30 N/mm ²
On Ms:	20 N/mm ²
On St:	25 N/mm ²
Hardness (BHN):	15 HB
Electrical conductivity:	7.5 Sm/mm ²
Specific gravity:	7.3 g/cm ³

Characteristics / Applications:

Solders on steel, stainless steel, copper and copper alloys. Foodstuffs industry, electrical industry and general apparatus engineering, refrigerating industry, copper pipe installations, hot and cold water installations, heating installations up to 100 °C, oil piping in accordance with DVGW specification sheet.

Lead- and cadmium-free eutectic solder with very good flowing properties. The solder remains brilliant even after a long period of using the soldered objects. Cold-resistant up to -200 °C.

Heat sources:

Acetylene torch (fuel gas excess), air-gas torch, soldering lamp, soldering iron, dip bath.

Flux:

F 600 - Series

Availability:

Bare rods	Cored wire	Wire	Foil	Preforms	Powder	Paste
		\square		\boxtimes		

FONTARGEN A 612 Antimony-free soft solder alloy

EN ISO 9453: A 612 DIN EN 29454.1 (Flux):	S-Sn60Pb40E / Alloy-no. 104 Solid wire F 600: 3.1.1.A (corrosive fluid, for unalloyed and low alloyed steel and heavy metals) F 600 CW: 3.1.1.C (paste-like, soldering flux, activated, limited corrosive) F 600 CC: 1.1.2. (paste-like, colophony based)
AF 612	Soft solder with active flux core
DIN EN 29454.1 (Flux):	1.1.2 (non corrosive flux, colophony

based)

Composition, typical analysis (% w/w):

Sn	Sb	Pb
60	0.05	Remainder

Mechanical and physical properties:

183 - 190 °C
29 N/mm ²
78 N/mm ²
13 HB
7 Sm/mm ²
8.5 g/cm ³

Characteristics / Applications:

General soldering work on iron and copper based metals without flux. Electrical industry and construction of electrical and general apparatuses. Tin plating. Lead-bearing soft solder with very narrow melting interval. Very fluid with good wetting properties on copper and ferrous metals. AF 612 enables good bonds with cuprous base metals without additional flux.

Heat sources:

Acetylene torch (fuel gas excess), air-gas torch, soldering lamp, soldering iron

Availability:

Bare rods	Cored Wire	Wire	Foil	Preforms	Powder	Paste
	\square	\square			\boxtimes	

FONTARGEN A 618 F-SW 34

Antimony-free soft solder with activated flux core

EN ISO 9453: DIN EN 29454.1 (Flux): S-Sn60Pb38Cu2 / Alloy-no. 161 1.1.2 (non corrosive flux, colophony based)

Composition, typical analysis (% w/w):

Sn	Cu	Sb	Pb
60	1.75	0.1	Remainder

Mechanical and physical properties:

Melting range:	183 - 190 °C
Tensile strength (solder):	38 N/mm ²
Hardness (BHN):	18 HB
Electrical conductivity:	6.6 Sm/mm ²
Specific gravity (metal):	8.5 g/cm ³

Characteristics / Applications:

General soldering work on copper base metals. Electrical industry and construction and general apparatuses. Solder with very narrow melting interval. Good wetting properties on copper. The copper content of 2 % ensures that the solder does not alloy with the copper of the soldering rod.

Heat sources:

Soldering iron

Availability:

Bare rods	Cored	Wire	Foil	Preforms	Powder	Paste
	\boxtimes					

S-Pb50Sn50 / Alloy-no. 111
F 600: 3.1.1.A (corrosive fluid, for low
alloyed and alloyed steel and heavy
metals)
F 600 CW: 3.1.1.C (paste-like, soldering
flux, activated, limited corrosive)
F 600 CC: 1.1.2. (paste-like, colophony
based)
Soft solder with active flux core
1.1.2 C. (paste-like, colophony based)

Sn	Sb	Pb
50	0.12	Remainder

Mechanical and physical properties:

Melting range:	183 - 215 °C
Tensile strength (solder):	39 N/mm ²
On Ms 58:	81 N/mm ²
Hardness (BHN):	12 HB
Electrical conductivity:	6.7 Sm/mm ²
Specific gravity (metal):	8.9 g/cm ³

Characteristics / Applications:

Tubular installations, electrical industry, thin sheet metal packages and tinning work. Soft solder with long melting interval and good gap-bridging properties. Good wetting properties on copper and copper alloys.

Heat sources:

Acetylene torch (fuel gas excess), air-gas torch, soldering lamp, soldering iron and dip bath.

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square				

DIN EN ISO 3677:	S-Zn98Al2
Flux (separate appl.):	F 600 ZA
	Highly active special flux for the soldering of aluminium. For a quality ensured soldering process, only a small amount is needed.

Zn		AI
98		2

Mechanical and physical properties:

Melting range: 382 - 407 °C Specific gravity (metal): 6,91 g/cm³

Characteristics / Applications:

Soft solder for joints on aluminium and aluminium alloys. Suitable for aluminium/copper-joints in the heating and cooling industry. Aluminium solder with low melting point.

Removal of brazing flux residues:

Brazing flux residues can be removed by brushing in hot water.

Heat sources:

Induction, flame

Availability:

Bare rods	Cored wire	Wire	Foil	Preforms	Powder	Paste

13/11/FG/1

All information concerning our products, equipment and processes is based on extensive nessen/t work and application behaviory experience. We provide these results orable and in writing in all concerning our products, equipment and processes in a loss on processes on its own processes on its own processes in a loss owner exempting the coursance in the chalquino to the charge product between the sequences of a second processe in a loss owner exempting the coursance in a loss of the charge processes on its owner incoming our process in a score and the second processes on its owner incoming our concent incoming ou

FONTARGEN A 633 Zinc-bearing aluminium soft solder

DIN EN ISO 3677: S-7n97AI3 F 600 7A Highly active special flux for the soldering of aluminium. For a quality ensured soldering process, only a small amount is needed

Composition typical analysis (% w/w):

Zn	Al
97	3

Mechanical and physical properties:

430 - 450 °C Melting range: Specific gravity (metal): 7.1 g/cm³

Characteristics / Applications:

Soft solder for joints on aluminium and aluminium allovs. Suitable for aluminium/copper-ioints in the heating and cooling industry. Aluminium solder with low melting point.

Removal of brazing flux residues:

Brazing flux residues can be removed by brushing in hot water.

Heat sources:

Induction, flame

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
\boxtimes						

13/11/JL/1

Flux:

FONTARGEN A 644 Copper-bearing, lead-free soft solder alloy

EN ISO 9453: DIN EN 29545.1 (Flux)	S-Sn97Cu3 / Alloy-no. 402 F 600: 3.1.1.A (corrosive fluid, for low alloyed and
	alloyed steel and heavy metals) F 600 CW: 3.1.1.C (paste-like, soldering flux, activated, limited corrosive)

Composition, typical analysis (% w/w):

Cu	Sn
3	Remainder

Mechanical and physical properties:

Melting range:	230 - 250 °C
Tensile strength (solder):	44 N/mm ²
On Ms 58:	53 N/mm ²
Shear strength on Cu:	30 N/mm ²
On Ms:	20 N/mm ²
On St:	25 N/mm ²
Hardness (BHN):	15 HB
Electrical conductivity:	8.5 Sm/mm ²
Specific gravity (metal):	7.3 g/cm ³

Characteristics / Applications:

Fittings solder for copper pipe installations and plumbing works. Work on metal goods. Suitable for the use in the foodstuffs industry. In terms of DVGW sheet GW 2 this solder is suited for copper pipe installations. Lead- and cadmium-free soft solder. The copper content ensures that the tin does not alloy with the copper of the soldering rod.

Heat sources:

Acetylene torch (fuel gas excess), air-gas torch, soldering lamp, soldering iron, induction, resistance heating, dip bath.

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
12/10/ 11/1				\boxtimes	\boxtimes	

FONTARGEN A 665 Zinc-bearing aluminium soft solder

DIN EN ISO 3677: Flux:

S-ZnAl22-420/480

F 600 ZA

Highly active special flux for the soldering of aluminium. For a quality ensured soldering process, only a small amount is needed.

Flux activity range: 400 – 500°C

Composition, typical analysis (% w/w):

Zn	AI
78	22

Mechanical and physical properties:

Melting range:	-	-	-	-	420 - 480 °C
Specific gravity:					5.4 g/cm ³

Characteristics / Applications:

Soft solder for joints on aluminium and aluminium alloys. Suitable for aluminium/copper-joints in the heating and cooling industry. Aluminium solder with low melting point.

Removal of brazing flux residues:

Brazing flux residues can be removed by brushing in hot water.

Heat sources:

Induction, flame

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste

DIN EN 29453 (*):

S-Sn99,9 (* leaning on)

Composition, typical analysis (% w/w):

Sn 99.9

Mechanical and physical properties:

Working temperature:	235 °C
Melting point:	232 °C
Specific gravity:	7.3 g/cm ³ (Metal content)

Characteristics / Applications:

AP 604/12 contains pure tin powder (lead free) mixed with a highly activating and corrosive flux. The coated surfaces remain brilliant and have a good corrosion resistance. Used for tin coating and soldering of copper, brass, steel, stainless steel.

Flux residues can be removed with hot water.

Heat sources:

Oxyacetylene torch (excess of fuel gas), air-gas torch, soldering iron, soldering lamp

Flux:

3.1.1 acc. DIN EN 29454.1

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm.

Availability:

On request

Pots	Cartridges
	\square

FONTARGEN AP 638/26

fontargen brazing

DIN EN 29453:

S-Sn99Cu1 / Alloy-no.: 23

Composition, typical analysis (% w/w):

Flux containing tin-copper solder paste

Cu	Sn
0.85	Remainder

Mechanical and physical properties:

Melting range:		• •	230 - 240 °C
Specific weight:			7.3 g/cm ³ (metal content)
Metal content:			approx. 89 %

Characteristics / Applications:

AP 638/26 is a solder with a high metal content, packed in a non corrosive flux rosin (colophony) binder system. This solder paste is used for soldering of Cu/Cu assemblies in the cold and hot water industry segment and preferably on solar absorbers.

Heat sources:

Induction, solder iron, oven

Flux:

1.1.2 acc. DIN EN 29454.1 (colophony)

Storage:

Keep sealed, under stable temperatures in dry rooms. Temperature 20 °C. Stir well before use.

Shelf life:

Approx. 4 months

Availability:

On request

Pots	Cartridges

FONTARGEN AP 644/12

Lead free highly activating tin copper solder paste

S-Sn97Cu3 / Alloy-no. 24

fontargen brazing

Composition, typical analysis (% w/w):

Cu	Sn
3	Rest

Mechanical and physical properties:

Working temperature:	300 °C
Melting range:	230 - 250 °C
Electrical conductivity:	8.5 Sm/mm ²
Specific weight:	7.3 g/cm ³ (metal content)

Characteristics / Applications:

The lead and cadmium free solder paste AP 644/12 contains a highly activating and corrosive flux. The flux residues are corrosive and must be removed after brazing. Used for tin coating and soldering of metal products. The paste is suitable for products used in the food industry. The paste must be well stirred before use.

Flux residues can be removed with hot water.

Heat sources:

Oxyacetylene torch (excess of fuel gas), gas-air torch, soldering iron, soldering lamp

Flux:

3.1.1 acc. DIN EN 29454.1

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm.

Availability:

On request

Pots	Cartridges
	\square

FONTARGEN AP 644/21

DIN EN 29453:

S-Sn97Cu3 / Alloy-no. 24

Composition, typical analysis (% w/w):

Lead free tin copper solder paste

Cu	Sn
3	Remainder

Mechanical and physical properties:

Working temperature:	300 °C
Melting range:	230 - 250 °C
Electrical conductivity:	8.5 Sm/mm ²
Specific weight:	7.3 g/cm ³ (metal content)

Characteristics / Applications:

For soldering with copper tube installations for hot and cold water supplies, including drinking water. The paste is suitable for applications in the food industry, sanitary (plumbing works - hot water up to 110 °C) and miscellaneous metal products. If used in copper tube installations, additional solid wire of solder A 644 S-Sn97Cu3 needs to be added to guarantee maximum penetration.

Removal of flux residues: Wash with warm water.

Heat sources:

Oxyacetylene torch (excess of fuel gas), air-gas torch, soldering iron, soldering lamp

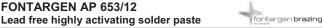
Flux:

3.1.1 acc. DIN EN 29454.1

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:


6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm.

Availability:

On request

Pots	Cartridges

FONTARGEN AP 653/12

DIN EN 29453

S-Sn96Aa4 / Allov-no.: 28

Composition, typical analysis (% w/w):

Ag	Sn
3.5	Remainder

Mechanical and physical properties:

Working temperature: 221 °C Electrical conductivity 8 1 Sm/mm² Specific weight: 7.3 g/cm³ (metal content)

Characteristics / Applications:

AP 653/12 contains a highly activating and corrosive flux. The alloy remains brilliant. The flux residues are corrosive and must be removed. Tin coating and soldering of copper, brass, steel, stainless steel, food industry, air conditioning. The paste must be well stirred before use.

Flux residues can be removed with hot water.

Heat sources:

Oxyacetylene torch (excess of fuel gas), air-gas torch, soldering iron, soldering lamp

Flux:

3.1.1 acc. DIN EN 29454.1

Storage:

Keep sealed, under stable temperatures in dry rooms. Optimum temperature range is between 5 and 20 °C. Stir well before use.

Shelf life:

6 months in pots; 3 months in cartridges > 175 ccm; 6 weeks in cartridges < 175 ccm.

Availability:

On request

Pots	Cartridges
	\boxtimes

Cu 141
CU 104
L-SF Cu
B-Cu100(P)-1085
BCu1f / BVCu1x
2.0040

Cu	P
> 99.9 (oxygen-free)	< 0.025

Mechanical and physical properties:

 Working temperature:
 1100 °C

 Melting range:
 1083 °C (Eutectic)

 Specific gravity:
 8.9 g/cm³

 Tensile strength on S235:
 340 N/mm

 Electrical conductivity:
 56 - 58 Sm/mm²

Characteristics / Applications:

Alloy suitable for gap brazing subjected to tough conditions. High-temperature brazing of alloyed and unalloyed steel.

Heat sources:

Inert-gas and vacuum furnace, induction

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
			X	\backslash	X	\boxtimes

ISO 17672:	Cu 110
DIN EN 1044:	CU 101
DIN 8513:	L-Cu
EN ISO 3677:	B-Cu100-1085
DIN EN 17933-52:	Cu-ETP
Material-no.:	2.0065 / 2.0060

Cu	P
> 99.9 (oxygenic)	< 0.025

Mechanical and physical properties:

 Working temperature:
 1100 °C

 Melting range:
 1083 °C (Eutectic)

 Specific gravity:
 8.9 g/cm³

 Tensile strength on S235:
 340 N/mm

 Electrical conductivity:
 56 - 58 Sm/mm²

Characteristics / Applications:

Alloy suitable for gap brazing subjected to tough conditions. High-temperature brazing of alloyed and unalloyed steel.

Heat sources:

Inert-gas furnace, induction

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square		\boxtimes		

10/13/JL/1

FONTARGEN A 203/6 L Copper-based high-temperature brazing alloy

DIN EN ISO 17672: DIN EN 1044: DIN 8513: Material-no.: EN ISO 3677: Cu 922 CU 201 L-CuSn6 2.1021 B-Cu94Sn(P)-910/1040

Composition, typical analysis (% w/w):

Cu	Sn	Р
93.55	6.25	0.2

Mechanical and physical properties:

Working temperature:	1040 °C
Melting range:	910 - 1040 °C
Specific gravity:	8.9 g/cm ³
Tensile strength:	334 - 363 N/mm ²
Elongation:	> 30 %
Electrical conductivity:	9 Sm/mm²
Heat conductivity:	35 W/mK
Hardness:	> 80 HB
Thermal elongation:	18.10 ⁻⁶ °C

Characteristics / Applications:

High-temperature brazing alloy for copper, iron and nickel.

Heat sources:

Inert-gas furnace, induction

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square	\boxtimes	\boxtimes	\boxtimes	\square

FONTARGEN A 203/12 L Copper-based high-temperature brazing alloy

DIN EN ISO 17672:	Cu 925
DIN EN 1044:	CU 202
DIN 8513:	L-CuSn12
EN ISO 3677:	B-Cu88Sn(P)-825/990
Material-no.:	2.1055

Composition, typical analysis (% w/w):

Cu	Sn	Р
87.8	12	0.2

fontargen brazing

Mechanical and physical properties:

Working temperature:	1000 °C
Melting range:	825 - 990 °C
Specific gravity:	8.9 g/cm ³
Tensile strength:	392 - 441 N/mm ²
Elongation:	25 - 28 %
Electrical conductivity:	6 Sm/mm ²
Heat conductivity:	61 W/mK
Hardness:	95 - 105 HB

Characteristics / Applications:

High-temperature brazing alloy for brazing of copper, iron and nickel.

Heat sources:

Inert-gas furnace, induction

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
				\boxtimes	\boxtimes	\square

FONTARGEN A 205 Copper-based high-temperature brazing alloy

EN ISO 3677: Material-no.: B-Cu86MnNi-970/990 2 1362

Composition, typical analysis (% w/w):

Cu	Mn	Ni
86	12	2

Mechanical and physical properties:

Working temperature:	990 °C
Melting range:	970 - 990 °C
Specific gravity:	8.4 g/cm ³
Tensile strength:	390 N/mm ²

Characteristics / Applications:

Manganese bearing copper based alloy for capillary brazing of alloyed and unalloyed steel. Well suited for hard metal / steel joints.

Heat sources:

Inert-gas furnace, induction, resistance-heating

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square				

FONTARGEN A 206

Copper-based high-temperature brazing allov

EN ISO 3677:

B-Cu87MnCo-980/1030

Composition, typical analysis (% w/w):

Cu	Mn	Co
87	10	3

Mechanical and physical properties:

Working temperature:	1020 °C
Melting range:	980 - 1030 °C
Specific gravity:	8.8 g/cm ³

Characteristics / Applications:

Manganese and Cobalt bearing copper based alloy for capillary brazing of hard metal, steel and Nickel allovs. Processing through controlled atmosphere furnace should be applied. A206 suits well to carbide/steel applications where high mechanical stresses are encountered (i.e. mining or road construction).

Heat sources:

Protective gas furnace, induction-heating, resistance-heating

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square		\boxtimes		

FONTARGEN A	842			
High temperature	gold	based	brazing a	alloy

EN ISO 17672:	Au 827	
EN ISO 3677:	B-Au82Ni-950	
AWS A 5.8:	BAu-4	
AMS:	4787 A	
Pratt & Whitnay:	698	
Composition, typical analysis (% w/w):	
Au	Ni	
82	18	

Mechanical and physical properties:

Working temperature:	1000 °C
Melting range:	950 °C (Eutectic)
Specific gravity:	9.8 g/cm ³
Shear strength:	441 N/mm
Gap width:	0.04 - 0.08 mm
Oxidation resistance:	815 °C

Characteristics / Applications:

The main application area of this alloy is the beam engine construction. It is used for joints of alloyed steel and nickel alloys where high strength as well as high temperature corrosion resistance is demanded. Suitable for the following materials: Fe/Cr, Mo/W, Ni, Ni/Cu, Ni/Fe, Fe/Co, steel, kovar and vacon.

Heat sources:

Inert gas furnace:

Oxygen (dew point: -51 °C) Argon (dew point: -63 °C) Vacuum 0.15 Pa (1 x 10³ Torr)

Vacuum furnace:

Availability:

Bare rods	Coated rods	Wire	Foil	Preforms	Powder	Paste
		\square	\square			

Cu 110
CU 101
L-Cu
B-Cu100-1085

Cu	
99.9	

Mechanical and physical properties:

Working temperature:	1100 - 1150 °C
Melting range:	1083 °C
Gap width:	≤ 0.15 mm
Viscosity range:	190.000 - 220.000 mPas
Metal content:	≈ 90 %

Characteristics / Applications:

Flux-free copper brazing paste with high metal content. The brazing paste has a high viscosity and dries slowly on air. Suited for workpieces made of unalloyed, high-alloyed as well as low-carbon steel.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace	Inert-gas continuous furnace	Inert-gas continuous furnace
Exogas	H ₂ /N ₂	Cracked ammonia atmosphere
	\boxtimes	\boxtimes

Availability:

Paste	Powder

Cu 110
CU 101
L-Cu
B-Cu100-1085

Cu	
99.9	

Mechanical and physical properties:

Working temperature:	1100 - 1150 °C
Melting range:	1083 °C
Gap width:	≤ 0.15 mm
Viscosity range:	120.000 - 145.000 mPas
Metal content:	≈ 89 % w/w
	316 N/mm ² (Assembly gap 0.05mm)
(Steel St 37-2 / Tensile test according to DIN50145)	272 N/mm ² (Assembly gap 0.15mm)
	316 N/mm ² (Assembly gap 0.05mm

Characteristics / Applications:

Flux-free copper brazing paste with high metal content. The paste has a medium viscosity and dries very slowly on air. Suited for unalloyed, lowalloyed and high-alloyed steel as well as nickel and nickel alloys. Easy to dispense and good adherence on the workpiece. Suitable for thin and thick workpieces.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace	Inert-gas continuous furnace	Inert-gas continuous furnace
Exogas	H ₂ /N ₂	Cracked ammonia atmosphere
\square	\boxtimes	\boxtimes

Availability:

Paste	Powder

EN ISO 17672:	Cu 110
DIN 8513:	L-Cu
EN ISO 3677:	B-Cu100-1085

Cu

99.9

Mechanical and physical properties:

Working temperature:	1100 - 1150 °C
Melting range:	1083 °C
Gap width:	≤ 0.15 mm
Viscosity range:	145.000 - 165.000 mPas
Metal content:	≈ 89 % w/w

Characteristics / Applications:

Flux-free copper brazing paste with high metal content. The paste has a medium viscosity and dries slowly on air. Suitable for workpieces made of unalloyed, low-alloyed and high-alloyed steel. Easy to dispense and good adherence on the workpiece.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace	Inert-gas continuous furnace	Inert-gas continuous furnace
Exogas	Cracked ammonia atmosphere	H ₂ /N ₂
	\boxtimes	\boxtimes

Availability:

Paste	Powder
	\square

5

Cu		
99	9	

Mechanical and physical properties:

1100 - 1150 °C
1083 °C
≤ 0.1 mm
150.000 - 165.000 mPas
≈ 87 % w/w
371 N/mm ² (Assembly gap)
356 N/mm ² (Assembly gap)

Characteristics / Applications:

Flux-free copper brazing paste with high metal content. The paste has a high viscosity and dries slowly on air. Suitable for workpieces made of unalloyed, low-alloyed and high-alloyed steel.

Heat sources:

Inert-gas continuous furnace Exogas	Inert-gas continuous furnace H₂/N₂ Cracked ammonia atmosphere	Vacuum furnace
		\square

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Availability:

Paste	Powder
	\boxtimes

Copper high-temperatu	()	fontargen brazing
DIN EN ISO 17672	Cu 141	
DIN EN 1044:	CU 104	
DIN 8513:	L-SFCu	
EN ISO 3677:	B-Cu100(P)-1085	
Composition, typical analysis (% w/w):		
	Cu	
	99.9	
Mechanical and physical p	properties:	
Working temperature:	1100 - 1150 °C	
Melting range:	1083 °C	
Gap width:	≤ 0.15 mm	
Viscosity range:	175.000 - 185.000 m	Pas
Metal content:	≈ 87 % w/w	
Tensile strength:	371 N/mm ² (Assembly ga	ap 0.05mm)

(Steel St 37-2 / Tensile test according to DIN50145) 356 N/mm² (Assembly gap 0.15mm)

Characteristics / Applications:

CONTADOCH AD 24 OLD (CC)

Flux-free copper brazing paste with high metal content. The paste has a high viscosity and dries slowly on air. Suitable for workpieces made of unalloyed, alloyed and high-alloyed steel.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace	Inert-gas continuous furnace	Inert-gas continuous furnace
Exogas	H ₂ /N ₂	Cracked ammonia atmosphere
\square	\square	\boxtimes

Availability:

Paste	Powder

Cu 141
CU 104
L-SFCu
B-Cu100(P)-1085

Cu	
99.9	

Mechanical and physical properties:

Working temperature:	1100 - 1150 °C
Melting range:	1083 °C
Gap width:	≤ 0.1 mm
Viscosity range:	150.000 - 165.000 mPas
Metal content:	≈ 85 % w/w

Characteristics / Applications:

Flux-free brazing paste with high metal content. The paste has a high viscosity and dries slowly on air. Suitable for workpieces made of unalloyed and alloyed steel.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace	Inert-gas continuous furnace	Inert-gas continuous furnace
Exogas	H ₂ /N ₂	Cracked ammonia atmosphere
	\boxtimes	\boxtimes

Availability:

Paste	Powder
	\square

FONTARGEN AP 21 DL / DS Copper- nickel- high-temperature brazing paste

fontargen brazing

DIN EN ISO 17672:	Cu 186
DIN EN 1044:	CU 105
EN ISO 3677:	B-Cu97Ni(B)-1085/1100

Composition, typical analysis (% w/w):

Cu	Ni	В
97	2.5	0.02 - 0.05

Mechanical and physical properties:

Working temperature:	1120 °C
Melting range:	1085 - 1100 °C
Gap width:	0.05 - 0.2 mm
Viscosity range:	105.000 - 120.000 mPas
Metal content:	≈ 88 % w/w
	301 N/mm ² (Assembly gap 0.05mm)
(Steel St 37-2 / Tensile test according to DIN50145)	408 N/mm ² (Assembly gap 0.15mm)

Characteristics / Applications:

Flux-free copper- nickel- brazing paste with high metal content. The paste has a high viscosity and dries slowly on air. The alloy is particularly well suited for bridging wide gaps (max. 0.2 mm). Suitable for workpieces made of alloyed and unalloyed steel, wolfram, molybdenum, tantalum and hard metals (e.g. drill bits exposed to high mechanical stress). The contained nickel facilitates the wetting on hard metals.

Heat sources:

Inert-gas continuous furnace Exogas	Inert-gas continuous furnace H₂/N₂ Cracked ammonia atmosphere	Vacuum furnace
\square		\boxtimes

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Producttypes:

AP 21 DL	AP 21 DS
Slow drying paste	Quick drying paste

Availability:

Paste	Powder
	\square

FONTARGEN AP 21 ESB2*

EN ISO 3677:

B-Cu87MnNi-980/1030

Composition, typical analysis (% w/w):

Copper- manganese- nickel brazing paste

Cu	Ni	Mn
87	3	10

Mechanical and physical properties:

Working temperature:	1120 °C
Melting range:	980 - 1030 °C
Gap width:	0.05 - 0.2 mm
Viscosity range:	105.000 - 115.000 mPas
Metal content:	≈ 88 % w/w
Tensile strength:	456 N/mm ² (Assembly gap 0.05mm)
(Steel St 37-2 / Tensile test according to DIN50145)	323 N/mm ² (Assembly gap 0.15mm)

Characteristics / Applications:

Flux-free copper- manganese- nickel- brazing paste with high metal content. This paste has a medium viscosity and dries slowly on air. Suitable for workpieces made of steel, hard metal, wolfram, molybdenum and tantalum. The paste has good wetting, flowing and gap bridging properties

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Exogas	Inert-gas continuous furnace H ₂ /N ₂	Vacuum furnace
	\boxtimes	

Availability:

Paste	Powder
	\boxtimes

FONTARGEN AP 21 GL / GS Copper- tin- high-temperature brazing paste

DIN ISO 3677:

B-Cu96Sn-960/1060

Composition, typical analysis (% w/w):

Cu	Sn	
96	4	

Mechanical and physical properties:

1060 - 1100 °C
960 - 1060 °C
).05 - 0.2 mm
90.000 - 110.000 mPas (GL)
45.000 - 55.000 mPas (GS)
≈ 87 % w/w

Characteristics / Applications:

Flux-free copper- tin- brazing paste with high metal content. The paste is easy to dispense and available in two different drying rates. Suitable for brazing of low-alloyed, medium-alloyed and high-alloyed steel. Good wetting and flowing properties.

Heat sources:

Inert-gas continuous furnace Exogas	Inert-gas continuous furnace H₂/N₂	Vacuum furnace (Watch vapour pressure curve!)
	\boxtimes	\boxtimes

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Producttypes:

AP 21 GL	AP 21 GS
Slow drying paste	Quick drying paste

Availability:

Paste	Powder
	\boxtimes

FONTARGEN AP 21 HL / HS Copper- tin- high-temperature brazing paste		
DIN EN ISO 17672: DIN EN 1044: DIN 8513: EN ISO 3677:	Cu 922 CU 201 L-CuSn6 B-Cu94Sn(P)-910/1040	
Composition, typical analysis (% w/w):		
Cu	Sn	
94	6	
Mechanical and physical properties:		

mechanical and physical properties.		
Working temperature:	1040 °C	
Melting range:	910 - 1040 °C	
Gap width:	0.1 - 0.2 mm	

Gap width:	0.1 - 0.2 mm
Viscosity range:	90.000 - 120.000 mPas
Metal content:	≈ 88 % w/w
	417 N/mm ² (Assembly gap 0.05mm)
(Steel St 37-2 / Tensile test according to DIN50145)	326 N/mm ² (Assembly gap 0.15mm)

Characteristics / Applications:

Flux-free copper- tin- brazing paste with high metal content. The paste is easy to dispense and available in two different drying rates. The brazing temperature range is a little lower compared to AP 21 GL (L-CuSn4). Suitable for brazing of unalloyed and alloyed steel.

Heat sources:

Inert-gas continuous furnace Exogas	Inert-gas continuous furnace H ₂ /N ₂	Vacuum furnace
	\boxtimes	

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Producttypes:

AP 21 HL	AP 21 HS
Slow drying paste	Quick drying paste

Availability:

Paste	Powder
	\boxtimes

ISO 17672:	Cu 925
DIN EN 1044:	CU 202
DIN 8513:	L-CuSn12
EN ISO 3677:	B-Cu88Sn(P)-825/990

Cu	Sn	Р
88	12	0.01 - 0.4

Mechanical and physical properties:

Working temperature:	990 °C
Melting range:	825 - 990 °C
Gap width:	≤ 0.15 mm
Viscosity range:	100.000 - 110.000 mPas
Metal content:	88 %
Tensile strength:	276 N/mm ² (Assembly gap 0.05mm)
(Steel St 37-2 / Tensile test according to DIN50145)	238 N/mm ² (Assembly gap 0.15mm)

Characteristics / Applications:

Flux-free copper- tin- brazing paste with high metal content. The paste has a high viscosity and dries slowly on air. Due to the low melting range the paste is particularly well suited for brazing of unalloyed and alloyed steel, copper and copper-plated workpieces as well as copper- nickel- alloys. Interesting for workpieces that have to be processed at low temperatures.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Exogas	Inert-gas continuous furnace H ₂ /N ₂	Vacuum furnace
\square	\boxtimes	\boxtimes

Availability:

Paste	Powder
	\square

FONTARGEN AP 22 GS Copper- tin- brazing paste

EN ISO 3677:

B-Cu96Sn-960/1060

Composition, typical analysis (% w/w):

Cu	Sn
96	4

Mechanical and physical properties:

Working temperature:	1060 - 1100 °C
Melting range:	960 - 1060 °C
Gap width:	0.05 - 0.2 mm
Viscosity range:	45.000 - 55.000 mPas
Metal content:	84 %

Characteristics / Applications:

Flux-free copper- tin- brazing paste with high metal content. The paste has a low viscosity, is easy to dispense and dries quickly on air. Good wetting and flowing properties.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Exogas	Inert-gas continuous furnace H ₂ /N ₂	Vacuum furnace
	\boxtimes	

Availability:

Paste	Powder

FONTARGEN HTL 1 Nickel-based high-temperature brazing paste

L		
fonta	argen	brazing

DIN EN 1044:	NI 101
DIN 8513:	L-Ni1
EN ISO 3677:	B-Ni74CrFeSiB(C)-980/1060
AWS:	BNi-1
AMS:	4775 G
Boing:	BTS 1025-4

Composition, typical analysis (% w/w):

Cr	Si	В	Fe	С	Р	Ni
14	4.5	3.2	4.5	0.75	< 0.02	Remainder

Mechanical and physical properties:

Working temperature:	1066 - 1204 °C
Melting range:	980 - 1060 °C
Gap width:	0.05 - 0.15 mm
Viscosity range:	55.000 - 65.000 mPas
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	1200 °C
Shear strength:	383 N/mm ² (1.4006)
(at room temperature)	334 N/mm ² (1.4301)

Characteristics / Applications:

This brazing alloy achieves good stability, is heat- and oxidationresistant and offers good diffusibility. Suitable for joints which are exposed to high thermal and dynamic stress, e.g. turbine blades as well as assemblies in the hot area of steel engines. Steel-, nickel-, cobalt and special materials. Suitable for workpieces with thicker cross sections.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\boxtimes	\boxtimes

Availability:

Paste HTL 1 AP	Powder HTL 1
	\square

FONTARGEN HTL 1A Nickel-based high-temperature brazing paste

DIN EN ISO 17672:	Ni 610
DIN EN 1044:	NI 1A1
DIN 8513:	L-Ni1a
EN ISO 3677:	B-Ni74CrFeSiB-980/1070
AWS:	BNi-1A
AMS:	4776 F
Boing:	BTS 1025-5

Composition, typical analysis (% w/w):

		Jere (,			
Cr	Si	В	Fe	С	Р	Ni
14	4.5	3.2	4.5	< 0.06	< 0.02	Remainder

Mechanical and physical properties:

Working temperature:	1077 - 1204 °C
Melting range:	980 - 1070 °C
Gap width:	0.05 - 0.1 mm
Viscosity range:	55.000 - 65.000 mPas
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	1200 °C
Shear strength [N/mm ²]:	383 (1.4006)
(at room temperature)	334 (1.4301)

Characteristics / Applications:

HTL1A is an alloy whose composition is identical to HTL 1, however, with a max. C-content of 0.06 %. This brazing alloy is utilised for parts which are used in the high-temperature range as well as in the cooling technology. This brazing alloy shows good gap bridging properties. Suitable for slowly heated assemblies made of steel, nickel, cobalt and special metals. This brazing alloy achieves good stability, is heat- and oxidationresistant and offers good diffusibility. Better flowing properties compared to HTL 1.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\boxtimes	\boxtimes

Availability:

Paste HTL 1A AP	Powder HTL 1A
	\boxtimes

FONTARGEN HTL 2 Nickel-based high-temperature brazing paste

DIN EN ISO 17672:	Ni 620
DIN EN 1044:	NI 102
DIN 8513:	L-Ni2
EN ISO 3677:	B-Ni82CrSiBFe-970/1000
AWS:	BNi-2
AMS:	4777
Rolls Royce:	9500/97

Composition, typical analysis (% w/w):

Cr	Si	В	Fe	С	Р	Ni
7	4.5	3.1	3	< 0.06	< 0.02	Remainder

Mechanical and physical properties:

Working temperature:	1010 - 1170 °C, rec. brazing temp. 1080 °C
Melting range:	970 - 1000 °C
Gap width:	0.02 - 0.20 mm
Viscosity range:	55.000 - 65.000 mPas
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	982 °C
Shear strength:	383 N/mm ² (1.4006)
(at room temperature)	255 N/mm ² (1.4301)

Characteristics / Applications:

This brazing alloy has good flowing properties and offers good diffusibility and is easy to dispense. Suitable for joints which are exposed to high thermal and dynamic stress. The brazing alloy allows optimal processing on e.g. turbine blades as well as on assemblies for the hot area in steel engines. Iron-, nickel-, cobalt and special materials.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\boxtimes	\boxtimes

Availability:

Paste HTL 2 AP	Powder HTL 2
	\square

95

FONTARGEN HTL 2 AP Nr. 4 Nickel-based high-temperature brazing paste

DIN EN ISO 17672:	Ni 620
DIN EN 1044:	NI 102
DIN 8513:	L-Ni2
EN ISO 3677:	B-Ni82CrSiBFe-970/1000
AWS:	BNi-2
AMS:	4777
Rolls Royce:	9500/97

Composition, typical analysis (% w/w):

Cr	Si	B	Fe	С	Р	Ni
7	4.5	3.1	3	< 0.06	< 0.02	Remainder

Mechanical and physical properties:

Working temperature:	1010 - 1170 °C,rec. brazing temp. 1080°C
Melting range:	970 - 1000 °C
Gap width:	0.02 - 0.15 mm
Viscosity range:	100.000 - 115.000 mPas
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	982 °C
Shear strength:	383 N/mm ² (1.4006)
(at room temperature)	255 N/mm ² (1.4301)

Characteristics / Applications:

This brazing alloy has good flowing properties and offers good diffusibility. It is easy to dispense and dries slowly on air. Suitable for joints which are exposed to high thermal and dynamic stress. The brazing alloy allows optimal processing on e.g. turbine blades, as well as on assemblies for the hot area in steel engines. Iron-.

nickel-, cobalt and special materials.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\boxtimes	\boxtimes

Availability:

Paste HTL 2 AP Nr. 4	Powder
\square	
13/10/ 11 /1	

FONTARGEN HTL 5 Nickel-based high-temperature brazing paste

DIN EN ISO 17672:	Ni 650
DIN EN 1044:	NI 105
DIN 8513:	L-Ni5
EN ISO 3677:	B-Ni71CrSi-1080/1135
AWS:	BNi-5
AMS:	4782 B

Composition, typical analysis (% w/w):

Cr	В	Si	С	Р	Ni
19	< 0.03	10.1	< 0.06	< 0.02	Remainder

Mechanical and physical properties:

Working temperature:	1149 - 1204 °C, rec. brazing temp. 1190 °C
Melting range:	1080 - 1135 °C
Gap width:	0.02 - 0.10 mm
Viscosity range:	55.000 - 65.000 mPas
Metal content:	≈ 90 % w/w
Shear strength:	676 N/mm ² (1.4006)
(at room temperature)	

Characteristics / Applications:

HTL 5 is a well suited brazing alloy for joints exposed to high stress. It has a good oxidation resistance. The absence of boron allows its use in the nuclear power area. Suited for joints made of iron-, nickel-, cobalt and special materials.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
		\boxtimes

Availability:

Paste HTL 5 AP	Powder HTL 5
	\square

••••••••••••••••••••••••••••••••••••••	our unuijoio (70 m/i	•/•	
Cr	Si	Р	Ni
29	4	6	Remainder

Mechanical and physical properties:

Working temperature:
Gap width:
Viscosity range:
Metal content:

1070 - 1090°C, rec. brazing temp. 1100 °C 0.02 - 0.35 mm 90000 - 115000 mPas ≈ 89 % w/w

Characteristics / Applications:

HTL 5 CR is a brazing alloy suited for corrosion resistant joints. It has excellent wetting properties and high tec. strength. HTL 5 CR is also used for wide gap brazing. The corrosion and oxidation resistance is better than B-Ni 5 but the brazing temperature is lower.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\boxtimes	\boxtimes

Availability:

Paste HTL 5 CR AP	Powder HTL 5 CR
	\square

FONTARGEN HTL 5 M Nickel-based high-temperature brazing paste

Composition, typical analysis (% w/w):

Cr	Si	P	Ni
18	8	2	Remainder

Mechanical and physical properties:

Working temperature: Melting range: Gap width: Viscosity range: Metal content: 1050 - 1070 °C, rec. brazing temp. 1060 °C 971 - 1051 °C 0.02 - 0.10 mm 55.000 - 65.000 mPas ≈ 89 % w/w

Characteristics / Applications:

HTL 5 is a brazing alloy suited for corrosionresistant joints.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\square	\boxtimes

Availability:

Paste HTL 5 M AP	Powder HTL 5 M
	\boxtimes

FONTARGEN HTL 6 Nickel-based high-temperature brazing paste

DIN EN ISO 17672:	Ni 700
DIN EN 1044:	NI 106
DIN 8513:	L-Ni6
EN ISO 3677:	B-Ni89P-875
AWS:	BNi-6

Composition, typical analysis (% w/w):

P	С	Ni
11	< 0.06	Remainder

Mechanical and physical properties:

Working temperature:	927 - 1093 °C, rec. brazing temp. 980 °C
Melting range:	875 °C
Gap width:	up to 0.05 mm
Viscosity range:	60.000 - 80.000 mPas
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	760 °C

Characteristics / Applications:

The brazing alloy HTL 6 has outstanding wetting properties. No erosion occurs while brazing on Fe- or Ni-based materials. The brazing alloy is applicable on currentless NiP-coated assemblies. Iron-, nickel-, cobalt- and special materials. Suited for workpieces which come in contact with food. Good flowing properties at low diffusibility.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Exogas / cracked NH ₃	Inert-gas continuous furnace Hydrogen	Vacuum furnace
\boxtimes	\boxtimes	

Availability:

Paste HTL 6 AP	Powder HTL 6	
13/10/JL/1		

FONTARGEN HTL 6 AP B Nickel-based high-temperature brazing paste

DIN EN ISO 17672:	Ni 700
DIN EN 1044:	NI 106
DIN 8513:	L-Ni6
EN ISO 3677:	B-Ni89P-875
AWS:	BNi-6

Composition, typical analysis (% w/w):

P	С	Ni
11	< 0.06	Remainder

Mechanical and physical properties:

Working temperature:	927 - 1093 °C, rec. brazing temp. 980 °C
Melting range:	875 °C
Gap width:	up to 0.05 mm
Viscosity range:	90.000 - 115.000 mPas
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	760 °C

Characteristics / Applications:

The brazing alloy HTL 6 offers outstanding wetting properties. No erosion occurs while brazing on Fe- or Ni-based materials. The brazing alloy is applicable on currentless NiP-coated assemblies. Iron-, nickel-, cobalt- and special materials. Suited for workpieces which come in contact with food. Good flowing properties at low diffusibility.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	t-gas continuous furnace Inert-gas continuous furnace Induction	
		\boxtimes

Availability:

Paste HTL 6 AP B	Powder

FONTARGEN HTL 7 Nickel-based high-temperature brazing alloy

DIN EN ISO 17672:	Ni 710
DIN EN 1044:	NI 107
DIN 8513:	L-Ni7
EN ISO 3677:	B-Ni76CrP-890
AWS:	BNi-7

Composition, typical analysis (% w/w):

1	0	, , ,	<u>, , , , , , , , , , , , , , , , , , , </u>	,	0.	D	N.P.
	Cr	Р	C	⊢e	SI	В	NI
	14	10.1	< 0.06	< 0.2	< 0.1	< 0.01	Remainder

Mechanical and physical properties:

Working temperature:	927 - 1093 °C, rec. brazing temp. 980 °C
Melting range:	890 °C
Gap width:	up to 0.05 mm
Viscosity range:	60.000 - 80.000 mPas
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	855 °C

Characteristics / Applications:

The brazing alloy HTL 7 is used for thin-walled tubes, honeycomb-structures as well as assemblies for the nuclear technology. It is easy to dispense and dries slowly on air. It is very well suited for high-tensile, vacuum-sealed, high-temperature- and corrosionresistant joints. Suited for parts which come in contact with food. The ductility of the brazing joint can be enhanced by an extension of the exposure time. Iron-, nickel-, cobalt and special materials are applicable. Good flowing properties at low diffusibility.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace cracked NH ₃	Inert-gas continuous furnace Hydrogen	Vacuum furnace
\square	\boxtimes	\boxtimes

Availability:

Paste HTL 7 AP	Powder HTL 7
	\square

FONTARGEN HTL 8 Nickel-based high-temperature brazing paste

DIN EN ISO 17672: DIN EN 1044: DIN 8513: EN ISO 3677:	Ni 800 NI 108 L-Ni8 B-Ni66MpSiCu-980/1010
EN ISO 3677:	B-Ni66MnSiCu-980/1010
AWS:	BNi-8

Composition, typical analysis (% w/w):

Mn	Cu	Si	С	Р	Ni
23	4.5	7	< 0.06	< 0.02	Remainder

Mechanical and physical properties:

Working temperature: Melting range: Gap width: Oxidationresistant up to: 1010 - 1093 °C, rec. brazing temp. 1065 °C 890 - 1010 °C up to 0.05 mm 816 °C

Characteristics / Applications:

The flux-free brazing alloy HTL 8 is used for brazing of heat exchangers, honeycomb-structures as well as temperable or stainless steel. The operation of this brazing alloy requires a very good furnace atmosphere. Iron-, nickel-, cobalt- and special materials are to be brazed with this alloy. Good flowing properties at low diffusibility.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\boxtimes	

Availability:

Paste HTL 8 AP	Powder HTL 8
	\square

FONTARGEN HTL 9

Copper-based high-temperature brazing paste

fontargen brazing

AMS:

4764 E

Composition, typical analysis (% w/w):

Cu	Ni	Mn
52.5	9.5	Remainder

Mechanical and physical properties:

Working temperature:	1010 - 1093 °C, rec. brazing temp. 1065 °C
Melting range:	879 - 927 °C
Gap width:	up to 0.02 - 0.08 mm
Oxidationresistant:	538 °C

Characteristics / Applications:

The flux-free brazing alloy HTL 9 is used for joints on Cu-, Fe- and Ni-based alloys as well as on stainless Cr-Ni-steel. This brazing alloy is used especially in the aviation, nuclear technology and the chemical industry. It is easy to dispense and dries slowly on air.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\boxtimes	

Availability:

Paste HTL 9 AP	Powder HTL 9
	\square

FONTARGEN HTL 10

Copper-based high-temperature brazing paste

fontargen brazing

EN ISO 3677:

B-Cu68MnNi-910/932

Composition, typical analysis (% w/w):

Cu	Ni	Mn
67.5	9	Remainder

Mechanical and physical properties:

Working temperature:	954 - 1093 °C
Melting range:	910 - 932 °C
Gap width:	up to 0.02 - 0.08 mm
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	538 °C

Characteristics / Applications:

The flux-free brazing alloy HTL 10 is used for joints on Cu-, Fe- and Ni-based alloys as well as on stainless Cr-Ni-steels. This brazing alloy is mostly used in aviation, nuclear technology and chemical industry.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\boxtimes	\boxtimes

Availability:

Paste HTL 10 AP	Powder HTL 10
	\boxtimes

FONTARGEN HTL 14 Gold-based high-temperature brazing paste

DIN EN ISO 17672:	Au 827
DIN EN 1044:	AU 105
EN ISO 3677:	B-Au82Ni-950
AWS:	BAu-4

Composition, typical analysis (% w/w):

Au	Ni
82	Remainder

Mechanical and physical properties:

Working temperature:	950 °C
Melting range:	949 - 1004 °C
Gap width:	up to 0.04 - 0.10 mm
Metal content:	≈ 90 % w/w
Oxidationresistant up to:	815 °C

Characteristics / Applications:

The flux-free brazing alloy HTL 14 has a wide range of applications in the steel engine construction. This standard Au-Ni brazing alloy is universally used for brazing of alloyed steel and Ni-alloys where high stability and good high-temperature corrosion resistance is demanded.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\square	\boxtimes

Availability:

Paste HTL 14 AP	Powder HTL 14
	\square
40/40/11/4	

FONTARGEN HTL 17

Copper-based high-temperature brazing paste

fontargen brazing

EN ISO 3677:

B-Cu87MnNi-980/1030

Composition, typical analysis (% w/w):

Mn	Ni	Cu
10	3	Remainder

Mechanical and physical properties:

982 - 1010 °C
980 - 1030 °C
up to 0.05 - 0.25 mm
100.000 - 120.000 mPas
≈ 91 % w/w

Characteristics / Applications:

The flux-free brazing alloy HTL 17 is an easy to dispense brazing paste with high metal content. This brazing alloy is particularly well suited for joints made of hard to wet base materials e.g. hard metals and for joining of workpieces with big brazing gaps. The binder dries slowly on air and combusts, depending on the brazing atmosphere, residue-free. Good wetting and flowing properties. Also suited for resistance-heating processes with inert-gas.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace cracked NH ₃	Inert-gas continuous furnace H ₂ /N ₂	Vacuum furnace
\boxtimes	\boxtimes	\boxtimes

Availability:

Paste HTL 17 AP	Powder HTL 17
	\boxtimes
40/40/18/4	•

106

FONTARGEN HTL 170 Nickel-based high temperature brazing paste

Composition, typical analysis (% w/w):

oompoontio	ii, cyprour an		•/•		
В	Cr	Si	Р	Fe	Ni
1.4	14	2	5.6	2	Remainder

Mechanical and physical properties:

Working temperature:	980 - 1050 °C
Melting range:	866 - 881 °C
Gap width:	0.02 - 0.2 mm
Viscosity range:	90.000 - 110.000 mPas
Metal content:	≈ 90 % w/w

Characteristics / Applications:

The flux-free brazing alloy HTL 170 is an easy to dispense brazing paste of medium viscosity with a high metal content and good gap bridging properties. The alloy is particularly well suited for brazing of high-alloyed steel. The paste dries slowly on air.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace cracked NH ₃	Inert-gas continuous furnace H ₂ /N ₂	Vacuum furnace
\square	\boxtimes	\boxtimes

Availability:

Paste HTL 170 AP	Powder HTL 170

Composition, typical analysis (% w/w):

Cu	Cr	P	Ni
10	11.8	8	Remainder

Mechanical and physical properties:

Working temperature: Melting range: Gap width:	·	980 - 1050 °C 870 - 890 °C up to 0.2 mm
Viscosity range:		90.000 - 110.000 mPas

Characteristics / Applications:

The flux-free brazing alloy HTL 270 AP is an easy to dispense brazing paste with medium viscosity and high metal content. It dries slowly on air and has good gap bridging properties. This brazing alloy is particularly well suited for stainless steel processing.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\square	

Availability:

Paste HTL 270 AP	Powder HTL 270
	\square

FONTARGEN HTL 310 Copper- nickel-based high-temperature paste

Composition, typical analysis (% w/w):

		., .,		•/•		
	Ni	Cu	Mn	Si	В	Remainder
ſ	42.2	40.5	14.1	1.8	1.2	< 0.2

Mechanical and physical properties:

Working temperature:	1100 °C
Melting range:	> 910 °C
Gap width:	up to 0.1 mm
Viscosity range:	80.000 - 90.000 mPas
Metal content:	≈ 90 % w/w
Gap width: Viscosity range:	up to 0.1 mm 80.000 - 90.000 mPa

Characteristics / Applications:

The flux-free brazing alloy HTL 310 is an easy to dispense brazing paste with medium viscosity and high metal content. It dries slowly on air. It is used for brazing of steel sinter materials.

Application:

Manually or automatically with pneumatical or mechanical dispensing units.

Heat sources:

Inert-gas continuous furnace Argon	Inert-gas continuous furnace Hydrogen	Vacuum furnace
	\boxtimes	

Availability:

Paste HTL 310 AP	Powder HTL 310

Notes

Group 2

Fluxes

- a) Brass and German silver fluxes
- b) Silver fluxes
- c) Aluminium-fluxes
- d) Soldering fluxes

Fluxes

fontargen brazing

a) Brass and German silver fluxes				
Туре	DIN EN 8511 / DIN 1045	Page		
F 100 - Serie Rapidflux - Series		114		
b) Silver fluxes				
Туре	DIN EN 8511 / DIN 1045	Page		
F 300 - Series		115		
c) Aluminium-fluxes				
Туре	DIN EN 8511 / DIN 1045	Page		
F 400 - Series		116		
d) Soldering-fluxes				
Туре	DIN EN 8511 / DIN 29454	Page		
F 600 - Series		117		

The following fluxes are available as standard brazing fluxes for brass and German silver:

F 100 (FH 21 / F-SH2) white paste, non-corrosive for brazing of steel, cast iron, malleable cast iron, nickel and nickel alloys.

F 110 (not standardised) red powder for welding of cast iron with FONTARGEN A 110.

F 120 (FH 21 / F-SH2) white powder, non-corrosive for brazing of steel, cast iron, malleable cast iron, nickel and nickel alloys. Mixed with distilled water, the powder becomes an easy to spread flux paste.

Rapidflux (FH 21 / F-SH2) clear liquid, non-corrosive for brazing of steel, cast iron, malleable cast iron, nickel and nickel alloys. The liquid is used in conjunction with the appropriate RAPIDFLUX equipment and is fed through the burner directly to the brazing joint.

Rapidflux NT (FH 21 / F-SH2) clear, nontoxic liquid, non-corrosive for brazing of steel, cast iron, malleable cast iron, nickel and nickel alloys. The liquid is used in conjunction with the appropriate RAPIDFLUX equipment and is fed through the burner directly to the brazing joint.

Silver brazing fluxes in accordance with DIN EN 1045 (DIN 8511)

The fluxes featured in the FONTARGEN program are adjusted to match the working temperature of the silver brazing alloy or to suit the base material being brazed.

F 300 (FH 10 / F-SH1) white powder, corrosive

for brazing of copper and copper alloys, nickel and nickel alloys, alloyed and unalloyed steel. Mixed with distilled water, the powder becomes an easy to spread flux paste.

F 300 H Ultra (FH 10 / F-SH1) white, easy to spread paste, corrosive for brazing of copper and copper alloys, nickel and nickel alloys, alloyed and unalloyed steel. Slightly increased temperature stability in comparison to F 300 S.

F 300 H Ultra NT (FH 10 / F-SH1)white, easy to dose flux paste, non toxic and corrosive for brazing of copper and copper alloys, nickel and nickel alloys, alloyed and unalloyed steel. Well suited for mechanical brazing e.g. flame brazing.

F 300 HF Ultra (FH 12 / F-SH1) dark, easy to spread paste, corrosive for brazing of copper and copper alloys, nickel and nickel alloys, alloyed and unalloyed steel as well as hard metals. Particularly well suited for higher temperatures of max. 850 °C.

F 300 DN (FH 10 / F-SH1) white, easy to dose flux paste, corrosive for brazing of copper and copper alloys, nickel and nickel alloys, alloyed and unalloyed steel. Well suited for mechanical brazing e.g. flame brazing.

F 3400 S (not standardised) clear sprayable liquid, slightly corrosive for brazing of copper and copper alloys. The flux supports the fluidity of the solder in conjunction with RAPIDFLUX and copper-phosphor-silver alloys.

Aluminium fluxes in accordance with DIN EN 1045 (DIN 8511)

The FONTARGEN fluxes for light metals have been developed to suit the characteristic properties of aluminium.

F 400 NH (FL 20 / F-LH2) white powder, non-corrosive

for brazing of aluminium and aluminium alloys with a Mg-content of max. 0.5 %. The powder is non-hygroscopic and mixed with distilled water the powder becomes an easy to spread flux paste. The brazing joints must be protected from wetness.

F 400 M (FL 10 / F-LH1) white powder, corrosive

for brazing of aluminium and aluminium alloys with a Mg-content of max. 3.0 %. The powder is highly hygroscopic. Flux residues are corrosive and must be removed immediately after the work is completed.

F 400 MD (FL 10 / F-LH1) white, easy to dose paste, corrosive

for brazing of aluminium and aluminium alloys with a Mg-content of max. 3.0 %. The paste is highly hygroscopic and should be kept in tight closed containers. Flux residues must be removed immediately after work is completed.

Soft soldering fluxes in accordance with DIN EN 29454 (DIN 8511)

The following soft soldering fluxes are featured in the FONTARGEN program:

F 600 (3.1.1.A / F-SW12) easy to spread liquid, corrosive Brazing of copper and copper alloys, alloyed and unalloyed steel.

F 600 S15 (3.2.2.A / F-SW11) liquid, corrosive Brazing of copper and copper alloys, alloyed and unalloyed steel. Suitable for galvanised plate.

F 600 CW (3.1.1.A / F-SW21) solder oil, non-corrosive High quality flux for soldering of pipe installation e.g. copper pipes. DVGWapproved.

F 600 C (3.1.1.A / F-SW21) solder oil, slightly corrosive Brazing of copper.

F 600 CC (1.1.2.C / F-SW26) paste, non-corrosive Colophony-based flux, suitable for brazing in the electrical engineering and electronics.

F 600 AL (2.1.2.A / F-LW3) oil, non-corrosive Brazing of aluminium, copper and copper alloys.

F 600 ZN (not standardised) paste, non-corrosive Brazing of aluminium, aluminium alloys and aluminium-copper alloys with zinc-aluminium solders at a temperature of approx. 380 - 500 °C.

Group 3

Wire electrodes

- a) Copper and copper alloys
- b) Aluminium and aluminium alloys

fontargen brazing

a) Copper and copper alloys

Туре	ISO 24373	Page
A 200 M	S Cu 1897 (CuAq1)	122
A 200 SM	S Cu 1898 (CuSn1)	123
A 202 M	S Cu 6560 (CuSi3Mn1)	124
A 202 MS	S Cu 6560 (CuSi3Mn1)	125
A 207 M	S Cu 6511 (CuSi2Mn1)	126
A 203/6 M	S Cu 5180 (CuSn6P)	127
A 203/12 M	S Cu 5410 (CuSn12P)	128
A 2115/5 Ni M	S Cu 6061 (CuAl5Ni2Mn)	129
A 2115/8 M	S Cu 6100 (CuAl7)	130
A 216 M	S Cu 6327 (CuAl8Ni2Fe2Mn2)	131
A 746 Ni M	-	132

b) Aluminium and aluminium alloys

Туре	ISO 18273	Page
A 400 Ti M	S AI 1450 (AI99,5Ti)	133
A 402 M	S AI 5754 (AIMg3)	134
A 404 M	S AI 5356 (AIMg5Cr(A))	135
A 404/4,5 M	S AI 5183 (AIMg4,5Mn0,7(A))	136
A 404/4,5 ZR M	S AI 5087 (AIMg4,5MnZr)	137
A 405 M	S AI 4043 (AISi5)	138
A 407 M	S AI 4047 (AISi12)	139

FONTARGEN A 200 M Copper wire electrode for MIG-welding

ISO 24373:	S Cu 1897 (CuAg1)
AWS A 5.7:	ERCu
Material-no.:	2.1211

Composition, typical analysis (% w/w):

Ag	Mn	Cu
1	0.1	Remainder

Characteristics / Applications:

Joint and build-up welding on copper, for example material numbers: 2.0060 (E-Cu 57), 2.0070 (SE-Cu), 2.0090 (SF-Cu), 2.0110 (SD-Cu), 2.0150 (SB-Cu), 2.0170 (SA-Cu), 2.1202 (Cu Ag), plates, profiles, containers.

Very easily processed copper alloy. Semi-fluid. Suited for difficult welding positions. The welding pool is clean and clear. The welding deposit is tough and non-porous. Colour and structure of the welding deposit like copper. For workpieces that must be polished, use in limited fashion, as silver can cause blackening. Preheat large workpieces to 350 - 600 °C; use Ar-He inert-gas mixture if necessary.

Mechanical properties of pure welding deposit (Min. values at room temperature):

	(minin valueo acroom	tomporata					
	Melting range:		1070 - 108	30 °C			
	Tensile strength:		200 N/mm	1 ²			
	Elongation limit (0.2 %	5):	80 N/mm ²				
	Elongation (I=5d):		30 %				
	Thermal elongation:		17.7 • 10 ⁻⁶	Ϊ/K			
	Hardness (Brinell):		60 HB				
	Electrical conductivity		44 - 46 Sn	n/mm²			
	Heat conductivity:		220 - 315	W/m • K			
	Specific gravity:		8.9 g/cm ³				
	Welding process:		MIG				
Shielding gas (DIN EN 439):			I 1 (Argon), I 3 (Ar-He mixture)				
	Current mode:		DC (+pole)			
	Availability:		Diameter	(mm): 0.8/1	.0/1.2/1.6/2	2.4	
	Spool type:		B300, S30	00			
	Welding position:		according	to DIN EN	287		
	PA PB	PC.	PD	PE	PF	PG	

PA	PB	PC	PD	PE	PF	PG
\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	

ISO 24373:	S Cu 1898 (CuSn1)
AWS A 5.7:	ERCu
Material-no.:	2.1006

Composition, typical analysis (% w/w):

Sn	Si	Mn	Cu
0.8	0.3	0.3	Remainder

Characteristics / Applications:

Joint and build-up welding on oxygen-free copper and copper alloys of material numbers: 2.0040, 2.0060, 2.0070, 2.0080, 2.0090, 2.0100, 2.0120, 2.0150, 2.0170, 2.1202, 2.1322, 2.1325, 2.1491. Suitable for out-of position welding. Clean base materials in the welding spheres and preheat if over 3 mm (per mm of plate thickness approx. 100 °C, but not more than 600 °C). Suitable for welding of galvanised steel (MIG-brazing).

Mechanical properties of pure welding deposit (Min. values at room temperature):

(with values at room temperatu	ne).				
Melting range:	1020 - 1050 °C				
Tensile strength:	200 - 240 N/mm ²				
Elongation (I=5d):	30 %				
Thermal elongation:	18.1 • 10 ⁻⁶ /K				
Impact energy (ISO-V):	75 J				
Hardness (Brinell):	50 - 60 HB				
Electrical conductivity:	15 - 20 Sm/mm²				
Heat conductivity:	120 - 145 W/m • K				
Specific gravity:	8.9 g/cm ³				
Welding process:	MIG				
Shielding gas (DIN EN 439):	I 1 (Argon), I 3 (Ar-He mixture)				
Current mode:	DC (+pole)				
Availability:	Diameter (mm): 0.8/1.0/1.2/1.6				
Spool type:	B300, S300				
Welding position:	according to DIN EN 287				
PA PB PC	PD PE PF PG				

FONTARGEN A 202 M

)

Copper-silicon wire	electrode	for MIG-brazing
---------------------	-----------	-----------------

ISO 24373:	S Cu 6560 (CuSi3Mn1
AWS A 5.7:	ERCuSi-A
Material-no.:	2.1461

Composition, typical analysis (% w/w):

Si	Sn	Zn	Mn	Fe	Cu
2.9	0.1	0.1	1.2	0.2	Remainder

Characteristics / Applications:

MIG-brazing of zinc or aluminium plated and uncoated steel plates. Applications: Auto body, air condition and container building. The corrosion resistance of zinc plated surfaces remains unaffected. Little deformation of thin steel sheets.

Mechanical properties of pure brazing deposit

(Min. values at room temperature):

(with values at room temperature).						
Melting range:	965 - 1032 °C					
Tensile strength:	350 N/mm²					
Yield strength:	120 N/mm ²					
Elongation (I=5d):	40 %					
Thermal elongation:	18.1 • 10 ⁻⁶ /K					
Hardness (Brinell):	80 HB					
Impact energy (ISO-V):	60 J					
Electrical conductivity:	3 - 4 Sm/mm²					
Heat conductivity:	35 W/m • K					
Specific gravity:	8.5 g/cm ³					
Brazing process:	MIG-/MAGM-/Laser-brazing					
Shielding gas (DIN EN 439):	I 1 (Argon), M 12 (Ar + 2.5 % CO ₂), M 12 (Ar + 1 - 3 % O ₂)					
Shielding gas (DIN EN 439): Current mode:						
,	M 12 (Ar + 1 - 3 % O ₂)					
Current mode:	M 12 (Ar + 1 - 3 % O ₂) DC (+pole)					
Current mode: Availability:	M 12 (År + 1 - 3 % O ₂) DC (+pole) Diameter (mm): 0.8/1.0/1.2/1.6					
Current mode: Availability: Spool type:	M 12 (År + 1 - 3 % O ₂) DC (+pole) Diameter (mm): 0.8/1.0/1.2/1.6 B300, S300, S560, Drum					

FONTARGEN A 202 MS

Copper-silicon wire electrode for laser brazing

ISO 24373:	S Cu 6560 (CuSi3Mn1)
AWS A 5.7:	ERCuSi-A
Material-no.:	2.1461

Composition, typical analysis (% w/w):

Si	Sn	Zn	Mn	Fe	Cu
2.9	0.1	0.1	1.2	0.2	Remainder

Characteristics / Applications:

Laser-brazing of zinc-galvanised, aluminized and uncoated steel plates. Applications: Auto body and thin sheet brazing in the automotive industry. The corrosion resistance of zinc-galvanised surfaces remains unaffected. Little deformation of thin steel sheets

Mechanical properties of pure welding deposit

(Min. values at room temperature):

(with values at room temperatu	ne).
Melting range:	965 - 1032 °C
Tensile strength:	350 N/mm²
Yield strength:	120 N/mm ²
Elongation (I=5d):	40 %
Thermal elongation:	18.1 • 10 ⁻⁶ /K
Hardness (Brinell):	80 HB
Impact energy (ISO-V):	60 J
Electrical conductivity:	3 - 4 Sm/mm²
Heat conductivity:	35 W/m • K
Specific gravity:	8.5 g/cm ³
Welding process:	Laser-brazing, laser-hybrid
Shielding gas (DIN EN 439):	I 1 (Argon)
Current mode:	DC (+pole)
Availability:	Diameter (mm): 0.8/1.0/1.2/1.6
Spool type:	B300
	S300
	S560
	Drum

Welding p	osition:	according to DIN EN 287				
PA	PB	PC	PD	PE	PF	PG
	\square	X			\boxtimes	
12/10/ 11 /1						

FONTARGEN A 207 M

Cu-Si-Mn wire electrode for MIG-Brazing

ISO 24373:	S Cu 6511 (CuSi2Mn)
Material-no.:	2.1522

Composition, typical analysis (% w/w):

Si	Sn	Mn	Cu
1.8	0.2	1	Remainder

Characteristics / Applications:

Very easy to weld. High temperature- and corrosion resistance as well as good behaviour under compression stress. Good wetting of the base material with lower working temperature compared to copper. Flat seams due to Si content and little pore formation.

Welding of galvanised auto body steel sheets (MIG brazing), un-alloyed and low-alloyed steels, cast iron as well as copper and copper alloys. With MIG burner: Weld sharp, not dragging.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(with values at room temperat	uie).
Melting range:	1030 - 1050 °C
Tensile strength:	285 N/mm²
Yield strength:	140 N/mm²
Elongation (I=5d):	up to 40 %
Impact energy:	75 J
Hardness (Brinell):	62 HB
Thermal conductivity:	40 W/m • K
Specific gravity:	8.7 g/cm ³
Linear expansion:	18.1 • 10 ⁻⁶ /K
Welding process:	MIG
Shielding gas (DIN EN 439):	I 1 (Argon)
Current mode:	DC (+pole)
Availability:	Diameter (mm): 0.8/1.0/1.2/1.6/2.4
Spool type:	B300
	S300

Welding position: according to DIN EN 287

Γ	PA	PB	PC	PD	PE	PF	PG
	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	

FONTARGEN A 203/6 M

Copper-tin wire	electrode fo	r MIG-welding
-----------------	--------------	---------------

ISO 24373:	S Cu 5180 A (CuSn6P)
AWS A 5.7:	ERCuSn-A
Material-no.:	2.1022

Composition, typical analysis (% w/w):

Sn	P	Cu
6	0.2	Remainder

Characteristics / Applications:

Welding of copper materials, e.g. CuSn-alloys, CuSnZnPb-cast alloys. Particularly well suited for the joint welding of brass on brass or brass on Cualloys, Fe-materials and cast iron. Suitable for welding of galvanised steel (MIG-brazing). Further applications include: Building-up of bearing bushes, sliding rails, repairs of phosphor bronze parts. For tin-bronze parts of > 10 mm thickness, we recommend preheating. Suitable for material numbers: 2.1010, 2.1016, 2.1020, 2.1030, 2.1050, 2.1052, 2.1056, 2.1080, 2.1086, 2.1090, 2.1096. Build-up welding on Fe materials should be performed by pulsed arc welding.

Corrosion- and overheating-resistant tin-bronze alloy. A 203/6 M is very easily machined and produces a clear weld pool. The welding deposit is tough and non-porous. Keep arc short. To eliminate contraction strains (in materials with high tin content) peen the seam.

Mechanical properties of pure welding deposit

(Min. value	es at room	temperatu	re):			
Melting ran	ge:		910 - 1040	O°C		
Tensile stre	ength:		260 N/mm	1 ²		
Elongation	(I=5d):		20 %			
Thermal ele	ongation:		18.1 • 10 ^{-€}	Ϊ/K		
Hardness (Brinell):		80 HB			
Electrical c	onductivity:		6 - 7 Sm/r	nm²		
Heat condu	ictivity:		75 W/m •	K		
Specific gra	avity:		8.7 g/cm ³			
Welding p	rocess:		MIG			
Shielding	gas (DIN E	N 439):	I 1 (Argon)		
Current m	ode:		DC (+pole)		
Availability	/ :		Diameter	(mm): 0.8/1	.0/1.2/1.6/2	2.0/2.4
Spool type	:		B300, S30	00		
Welding p	osition:		according	to DIN EN	287	
PA	PB	PC	PD	PE	PF	PG
\square	\boxtimes	\square		\square		

FONTARGEN A 203/12 M

Copper-tin w	vire electrode	for MIG-welding
--------------	----------------	-----------------

ISO 24373:	S Cu 5410 (CuSn12P)
AWS A 5.7:	RCuSn-D
Material-no.:	2.1056

Composition, typical analysis (% w/w):

Sn	P	Cu
12	0.2	Remainder

Characteristics / Applications:

Welding of copper materials, e.g. copper and Sn-bronze. Particularly well suited for joint welding of brass on brass or brass on Cu alloys and Fe materials. Building-up of bearing bushes, sliding rails and repairs of phosphor bronze parts. Welding deposit nearly of same colour as welding of red brass Rg 5. Suitable for material numbers: 2.1010, 2.1020, 2.1050, 2.1056, 2.1086, 2.1016, 2.1030, 2.1052, 2.1080. Build-up welding on Fe materials should be performed with pulsed arc welding.

Corrosion- and overheating-resistant tin-bronze alloy. A 203/12 M is very easily machined and produces a clear weld pool that is smooth, clear and non-porous.

Mechanical properties of pure welding deposit

(Min. values at room temperati	ure):
Melting range:	825 - 990 °C
Tensile strength:	320 N/mm ²
Elongation (I=5d):	5 %
Thermal elongation:	18.5 • 10 ⁻⁶ /K
Hardness (Brinell):	120 HB
Impact energy:	8 J
Electrical conductivity:	3 - 5 Sm/mm²
Heat conductivity:	40 - 50 W/m • K
Specific gravity:	8.6 g/cm ³
Welding process:	MIG
Shielding gas (DIN EN 439):	I 1 (Argon)
Current mode:	DC (+pole)
Availability:	Diameter (mm): 0.8/1.0/1.2/1.6/2.0/2.4
Spool type:	B300 S300
Walding position:	according to DIN EN 287

Welding p	osition:		according	to DIN EN	287	
PA	PB	PC	PD	PE	PF	PG
\square	\square	\square		\boxtimes	\square	

FONTARGEN A 2115/5 Ni M Copper-aluminium wire electrode for MIG-brazing

fontargen brazing

ISO 24373:

S Cu 6061 (CuAl5Ni2Mn)

Composition, typical analysis (% w/w):

Al	Ni	Mn	Cu
5	2	0.2	Remainder

Characteristics / Applications:

Welded joints and deposit welding on aluminium bronze with 5 - 6 % Al, highstrength brass, copper and copper-alloys, ferritic and austentic steel, steel, aluminium-coated steel, gray cast. Suitable for welding of galvanized steel (MIG-welding). Preheating is only necessary for big assemblies. Pulsed arc welding is recommended for the first layer of deposit welding on ferrous materials.

Mechanical properties of pure welding deposit

(Min. values at room temperature):

(min. values at room temperate	are).
Melting range:	1060 - 1085 °C
Tensile strength:	360 - 450 N/mm²
Elongation (I=5d):	45 %
Hardness (Brinell):	160 HB
Thermal conductivity:	61 W/m • K
Electrical conductivity:	8.0 - 8.8 Sm/mm ²
Specific gravity:	8.2 g/cm ³
Linear expansion:	17.5 • 10 ⁻⁶ /K
Welding process:	MIG
Shielding gas (DIN EN 439):	l 1 (Argon), M 12 (Ar + 2 % CO ₂), M 12 (Ar + 1 % O ₂)
Current mode:	DC (+pole)
Availability:	Diameter (mm): 0.8/1.0/1.2/1.6/2.4
Spool type:	B300
	S300
	Drum
Welding position:	according to DIN EN 287
DA DB DC	PD PE PE PG

PA	PB	PC	PD	PE	PF	PG
	\square	\square		\square	\boxtimes	

FONTARGEN A 2115/8 M

fontargen brazing

ISO 24373:	S Cu 6100 (CuAl7)
AWS A 5.7:	ERCuAl-A1
Material number:	2.0921

Composition, typical analysis (% w/w):

AI	Ni	Mn	Fe	Cu
8	0.5	0.2	0.2	Remainder

Characteristics / Applications:

MIG-brazing of aluminium plated and uncoated steel plates. Applications: Auto body, magnetic solenoids, air conditioning and container building. The corrosion resistance galvanized steel plates remain unaffected. Little deformation of thin steel sheets.

Suitable for joining of aluminium-bronze, high-strength brass and steel. Range of applications: Car body, ship building, heating and cooling as well as container building.

Mechanical properties of pure brazing deposit

(Min. values at room	temperatu	ire):			
Melting range:		1030 - 104	10 °C		
Tensile strength:		380 - 450	N/mm²		
Elongation (I=5d):		45 %			
Thermal elongation:		17 • 10 ⁻⁶ /K			
Hardness (Brinell):		60 - 80 HE	3		
Electrical conductivity:		8 Sm/mm ²	2		
Heat conductivity:		35 W/m • I	K		
Specific gravity:		7.7 g/cm ³			
Brazing process:		MIG-brazi	ng		
Shielding gas (DIN El	N 439):	I 1 (Argon)		
Current mode:		DC (+pole)		
Availability:		Diameter	(mm): 0.8/1	.0/1.2	
Spool type:		B300, S30	0, Drum		
Welding position:		according	to DIN EN	287	
PA PB	PC	PD	PE	PF	PG
	\boxtimes		\boxtimes	\square	

FONTARGEN A 216 M

Copper-a	luminium	-nickel	wire
----------	----------	---------	------

ISO 24373:	S Cu 6327 (CuAl8Ni2Fe2Mn2)
AWS A 5.17:	ERCuNiAl
Material-no.:	2.0922

Composition, typical analysis (% w/w):

AI	Ni	Mn	Fe	Cu
8	2	1.8	1.8	Remainder

Characteristics / Applications:

Joint and build-up welding on multi-alloyed aluminium-bronze, for example material numbers: 2.0916, 2.0920, 2.0928, 2.0932, 2.0936, 2.0940, 2.0960, 2.0966, 2.0970, 2.0975, 2.0978 and 2.0980. Build-up welding on steel and copper alloys. Fusion welding between steel and aluminium-bronze (also multi-alloys). Suitable for MIG-brazing of aluminium surfaced and galvanised steels. For use in shipbuilding, machine, apparatus and pump construction, for example ship propellers, pump casings, valve control casings and food containers. Preheating necessary only with large workpieces. For the first run of build-up welds on ferrous base material we recommend pulsed-arc welding.

The welding deposit is saltwater- and corrosion resistant as well as wear resistant. Well suited if subjected to wear by salt water, cavitation and erosion at the same time.

Mechanical properties of pure welding deposit

(Min. values at room temperature):

	ne).
Melting range:	1030 - 1050 °C
Tensile strength:	530 - 590 N/mm²
Yield strength (0.2 %):	290 N/mm ²
Elongation (I=5d):	30 %
Impact energy (ISO-V):	70 J
Hardness (Brinell):	130 - 150 HB
Electrical conductivity:	5 Sm/mm²
Welding process:	MIG
Shielding gas (DIN EN 439):	I 1 (Argon)
	l 1 (Argon) DC (+pole)
Shielding gas (DIN EN 439):	
Shielding gas (DIN EN 439): Current mode:	DC (+pole)
Shielding gas (DIN EN 439): Current mode: Availability:	DC (+pole) Diameter (mm): 0.8/1.0/1.2/1.6/2.4

Welding position:	according to DIN EN 287

PA	PB	PC	PD	PE	PF	PG
	\boxtimes	\boxtimes		\boxtimes	\boxtimes	

FONTARGEN A 746 NIM

Copper-manganese-silicon electrode for MIG-brazing

DIN EN ISO 24373:	CuZ (CuMn12Ni2)
Material No.:	2.1362

Composition, typical analysis (% w/w):

Ni	Mn	Other	Cu
2,0 - 2,5	12,0 – 13,0	0,1	Remainder

fontargen brazing

Characteristics / Applications:

High yield strength, ductility and crack resistance. Joining of steel plates and high Mn-alloyed bronzes. Surfacing of rotation-symmetric blanks for solenoids.

Mechanical properties of pure welding deposit

(Min. values at RT):

	Melting range:			950 - 970	°C			
	Tensile strength:			350 - 450	N/mm²			
	Yield strength:			250 – 320	N/mm²			
	Elongation:			> 10%				
	Specific gravity:			7,4 g/cm ³				
	Electrical conductiv	ity:		2,3 Sm/mi	m²			
	Heat conductivity:		22 w/(m • k)					
	Process:		MIG-brazing					
Shielding gas (EN 439):			I1 (welding grade argon)					
Heat sources:			Acetylene torch					
	Availability:		Diameter (mm): 0,8/1,0/1,2/1,6					
Spool type:			B300, S300					
	Welding position:			according to DIN EN 287				
	PA PB		PC.	PD	PE	PF	PC	

PA	PB	PC	PD	PE	PF	PG
\boxtimes	\boxtimes	\boxtimes		\square	\square	

09/10/SR/0

Aluminium wire electrode for MIG-welding

ISO 18273:	S AI 1450 (AI99,5Ti)
Material-no.:	3.0805

Composition, typical analysis (% w/w):

Fe	Si	Cu	Zn	Ti	Al
0.4	0.2	0.05	0.07	0.1	Remainder

Characteristics / Applications:

Aluminium alloy with good fluidity. Weldable in all positions. The Ti-content ensures a grain refinement of the welding deposit. Joint welding of base materials: Al 98; Al 99; Al 99,5; Al 99,8 und Al 99,7. For plates thicker than 15 mm preheat to a min. of 150 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

Melting range:		647 - 658 °C						
Tensile strength:		65 N/mm ²						
Yield strength (0.2 %):		30 N/mm ²						
Elongation (I=5d):		35 %						
Electrical conductivity:		34 - 36 Sn	n/mm²					
Heat conductivity:		210 - 230	W/m • K					
Specific gravity:		2.71 g/cm	3					
Linear expansion:		23.5 • 10 ⁻⁶	/K					
Welding process:	Welding process:			MIG				
Shielding gas (DIN E	N 439):	I 1 (Argon)						
	I 3 (Argon/Helium mixture)							
Current mode:	Current mode:			Direct current (+pole)				
Availability:	Diameter (mm): 0.8/1.0/1.2/1.6/2.4							
Spool type:	B300							
Welding position:		according to DIN EN 287						
PA PB	PC	PD	PE	PF	PG			
			\boxtimes	\square				

FONTARGEN A 402 M

Aluminium-magnesium wire electrode for MIG-welding

ISO 18273:	S AI 5754 (AIMg3)
AWS A 5.10:	ER5754
Material-no.:	3.3536

Composition, typical analysis (% w/w):

Mg	Mn	Fe	Si	Cr	Ti	Al
3	0.3	0.2	0.2	0.1	0.1	Remainder

Characteristics / Applications:

Corrosion- and saltwater-proof alloy. Suitable for anodising.

Welding of rolled and cast aluminium-magnesium alloys such as AI Mg 3, AI Mg Mn, AI Mg 1, AI Mg 2, AI Mg Si 0,5, AI Mg Si 0,8, G - AI Mg 3, G - AI Mg 3 (Cu), G - AI Mg 3 Si. Tank construction, aluminium constructions, constructions of vehicles, shipbuilding, window and door frames construction. Plates thicker than

15 mm must be preheated to approx. 150 °C - 200 °C.

Mechanical properties of pure welding deposit

(Min. values at room temperature):

Melting ran	do:		610 - 642	°C			
0	0			-			
Tensile stre			200 N/mm	l ²			
Yield streng	gth (0.2 %):		80 N/mm ²				
Elongation	(I=5d):		20 %				
Electrical c	onductivity:		21 Sm/mn	1 ²			
Heat condu	ctivity:		130 - 170	W/m • K			
Specific gra	avity:		2.66 g/cm	3			
Linear expa	ansion:		23.7 • 10 ⁻⁶ /K				
Welding p	rocess:		MIG				
Shielding	gas (DIN E	N 439):	l 1 (Argon) I 3 (Argon/Helium mixture)				
Current m	ode:		Direct current (+pole)				
Availability	<i>/</i> :		Diameter (mm): 0.8/1.0/1.2/1.6/2.4				
Spool type	:		B300				
Welding p	ositions:		according to DIN EN 287				
PA	PB	PC	PD	PE	PF	PG	

PA	PB	PC	PD	PE	PF	
\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	
3/10/11/1						_

FONTARGEN A 404 M

Aluminium-magnesium wire electrode for MIG-welding

ISO 18273:	S AI 5356 (AIMg5Cr(A))
AWS A 5.10:	ER5356
Material-no.:	3.3556

Composition, typical analysis (% w/w):

Mg	Mn	Fe	Si	Cr	Ti	Al
5	0.1	0.2	0.2	0.1	0.1	Remainder

Characteristics / Applications:

Corrosion- and saltwater-proof alloy. Suitable for anodising. Welding of rolled and cast aluminium-magnesium alloys according to DIN 1725 Bl. 1 and Bl. 2, like Al Mg 3, Al Mg 5, Al Mg Mn, Al Zn Mg 1, G-Al Mg 3/+Si/+Cu, G-Al Mg 5/+Si, G-Al Mg 10, Al Mg Si 1. Tank construction, construction of vehicles, aluminium constructions, shipbuilding, windows, etc. For plates thicker than 15 mm, preheat to min. 150 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(with values at room temperature).						
Melting range:	575 - 633 °C					
Tensile strength:	250 N/mm ²					
Yield strength (0.2 %):	110 N/mm ²					
Elongation (I=5d):	25 %					
Electrical conductivity:	15 - 19 Sm/mm²					
Heat conductivity:	110 - 150 W/m • K					
Specific gravity:	2.64 g/cm ³					
Linear expansion:	23.7 • 10 ⁻⁶ /K					
Welding process:	MIG					
Shielding gas (DIN EN 439):	I 1 (Argon)					
	I 3 (Argon/Helium mixture)					
Current mode:	Direct current (+pole)					
Availability:	Diameter (mm): 0.8/1.0/1.2/1.6/2.4					
Spool type:	B300					
Welding position:	according to DIN EN 287					
PA PB PC	PD PE PF PG					

FONTARGEN A 404/4,5 M

Aluminium-magnesium wire electrode for MIG-welding

ISO 18273:	S AI 5183 (AIMg4,5Mn0,7(A))
AWS A 5.10:	ER5183
Material-no.:	3.3548

Composition, typical analysis (% w/w):

Mg	Mn	Fe	Si	Cr	Ti	AI
4.5	0.7	0.2	0.2	0.1	0.1	Remainder

Characteristics / Applications:

Filler metal for joints which demand highest toughness. The welding deposit has a good resistance to atmospheric influences and seawater. Joint welding on rolled and cast aluminium-magnesium alloys, e.g. Al Mg 4,5 Mn, Al Mg 5, Al Zn 4,5 Mg 1, G-Al Mg 3/+Si/+Cu, G-Al Mg 5/+Si, G-Al Mg 10, Al Mg Si 1. If plates are thicker than 15 mm, preheat to a min. of 150 °C.

Filler metal for joints with highest toughness demands. The welding deposit has a good resistance to atmospheric influences and saltwater.

Mechanical properties of pure welding deposit

/lin. values at room temperature):						
Melting range:	574 - 638 °C					
Tensile strength:	280 N/mm ²					
Yield strength:	140 N/mm ²					
Elongation (I=5d):	20 %					
Electrical conductivity:	16 - 19 Sm/mm²					
Heat conductivity:	110 - 120 W/m • K					
Specific gravity:	2.66 g/cm ³					
Linear expansion:	23.7 • 10 ⁻⁶ /K					
Welding process:	MIG					
Shielding gas (DIN EN 439):	I 1 (Argon) I 3 (Argon/Helium mixture)					
Current mode:	DC (+pole)					
Approval:	DB (61.046.02/QS)					
Availability:	Diameter (mm): 0.8/1.0/1.2/1.6/2.4					
Spool type:	B300					
Welding position:	according to DIN EN 287					
PA PB PC	PD PE PF PG					

FONTARGEN A 404/4,5 Zr M

Aluminium-magnesium wire electrode for MIG-welding

ISO 18273:	S AI 5087 (AIMg4,5MnZr)
AWS A 5.10:	ER5087
Material-no.:	3.3546

Composition, typical analysis (% w/w):

Mg	Mn	Fe	Si	Cr	Ti	Zr	AI
4.7	0.9	0.2	0.1	0.1	0.1	0.15	Remainder

Characteristics / Applications:

Zirconic welding deposit for joints which demand highest toughness. Zirconium increases the heat crack-resistance. The welding filler can be used advantageously for complicated welding constructions involving unfavourable restraint conditions. The welding deposit has a good resistance to atmospheric influences and seawater.

Joint welding on rolled and cast aluminium-magnesium alloys, e.g. Al Mg 3, G-Al Mg 3, Al Mg 4,5 Mn, Al Mg 5, G-Al Mg 5, Al-Cu Mg 1, Al Mg Si 1, Al Zn 4,5 Mg 1. If plates are thicker than 10 mm, preheat to $150 \,^{\circ}$ C - $200 \,^{\circ}$ C.

Mechanical properties of pure welding deposit (Min_values at room temperature):

(with values at room temperature).									
Melting range:			574 - 638	°C					
Tensile strength:			300 N/mm	2					
Yield strength (0.	2 %):		140 N/mm²						
Elongation (I=5d)):		20 %						
Electrical conduc	tivity:		17 - 19 Sn	n/mm²					
Heat conductivity	r:		110 - 120	W/m • K					
Specific gravity:			2.66 g/cm	3					
Linear expansion	1:		23.7 • 10 ⁻⁶ /K						
Welding proces	Nelding process:			MIG					
Shielding gas (D	DIN E	N 439):	I 1 (Argon)						
00 (,	I 3 (Argon	3 (Argon/Helium mixture)					
Current mode:			DC (+pole)						
Availability:			Diameter (mm): 0.8/1.0/1.2/1.6/2.4						
Spool type:			B300						
Welding position:			according to DIN EN 287						
PA PI	В	PC	PD	PE	PF	PG			
	3	\square		\boxtimes	\square				

FONTARGEN A 405 M

Aluminium-silicon wire electrode for MIG-welding

ISO 18273:	S AI 4043 (AISi5)
AWS A 5.10:	ER4043
Material-no.:	3.2245

Composition, typical analysis (% w/w):

Fe	Si	Cu	Ti	Al
0.5	5.2	0.1	0.1	Remainder

Characteristics / Applications:

Welding of Al Si 5, Al Mg Si 0,5, Al Mg Si 0,8, Al Mg Si 1. Al and Al alloys with an alloy content of less than 2 %. Al cast alloy with Si content of max. 7 %. Plates thicker than 15 mm, preheat to approx. 150 °C. When welding heat treatable alloys, do not put the weld seam in areas subjected to high mechanical stress. Al-Si alloy with good fluidity. Discolouring when anodised.

Mechanical and physical properties:

meenamear and physical prope	
Melting range:	573 - 625 °C
Tensile strength:	160 N/mm ²
Yield strength (0.2 %):	40 N/mm ²
Elongation (I=5d):	15 %
Electrical conductivity:	24 - 32 Sm/mm²
Heat conductivity:	170 W/m • K
Specific gravity:	2.68 g/cm ³
Linear expansion:	22.1 • 10 ⁻⁶ /K
Welding process:	MIG
Shielding gas (DIN EN 439):	l 1 (Argon)
	I 3 (Argon/Helium mixture)
Current mode:	DC (+pole)
Availability:	Diameter (mm): 0.8/1.0/1.2/1.6/2.4
Spool type:	B300
Approval:	DB (61.046.01/QS)
Welding position:	according to DIN EN 287

PA	PB	PC	PD	PE	PF	PG
	\boxtimes	\square		\square	\boxtimes	

FONTARGEN A 407 M

fontargen brazing

ISO 18273:	S AI 4047 (AISi12(A))
AWS A 5.10:	ER4047
Material-no.:	3.2585

Composition, typical analysis (% w/w):

Si	Fe	Mn	Cu	Zn	Ti	Al
12	0.5	0.1	0.1	0.1	0.1	Remainder

Characteristics / Applications:

Al-Si allov with good fluidity. Structure and colour matching. Not suited for ioints that are subsequently anodised. Al-Si cast allovs with more than 7 % weight content of silicon. In special cases also AI and AI alloys with less than 2 % alloying elements. Tank constructions, air-conditioning equipment, household appliances, sheets, pipes, profiles, Preheat thick plates and large workpieces to approx. 150 °C - 180 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(mini valaco at room temperata	,			
Melting range:	573 - 585 °C			
Tensile strength:	180 N/mm²			
Yield strength (0.2 %):	80 N/mm ²			
Elongation (I=5d):	5 %			
Electrical conductivity:	17 - 27 Sm/mm²			
Heat conductivity:	150 - 170 W/m • K			
Specific gravity:	2.65 g/cm ³			
Linear expansion:	20 • 10 ⁻⁶ /K			
Welding process:	MIG			
Shielding gas (DIN EN 439):	l 1 (Argon) I 3 (Argon/Helium mixture)			
Current mode:	DC (+pole)			
Availability:	Diameter (mm): 0.8/1.0/1.2			
Spool type:	B300			
Welding position:	according to DIN EN 287			
PA PB PC	PD PE PF PG			
13/10/JL/1				

Group 4

Welding rods

- a) Copper and copper alloys
- b) Aluminium and aluminium alloys

fontargen brazing

a) Copper and copper alloys

Туре	ISO 24373	Page
A 200 W	S Cu 1897 (CuAg1)	144
A 200 SW	S Cu 1898 (CuSn1)	145
A 202 W	S Cu 6560 (CuSi3Mn1)	146
A 207 W	S Cu 6511 (CuSi2Mn1)	147
A 203/6 W	S Cu 5180 (CuSn6P)	148
A 203/12 W	S Cu 5410 (CuSn12)	149
A 215/8 W	S Cu 6100 (CuAl7)	150
A 216 W	S Cu 6327 (CuAl8Ni2Fe2Mn2)	151
AF 216 MK	S Cu 6327 (CuAl8Ni2Fe2Mn2)	152

b) Aluminium and aluminium alloys

Туре	ISO 18273	Page
A 400 Ti W	S AI 1450 (AI 99,5 Ti)	153
A 402 W	S AI 5754 (AIMg3)	154
A 404 W	S AI 5356 (AIMg5Cr(A))	155
A 404 /4,5 W	S AI 5183 (AIMg4,5Mn0,7(A))	156
A 404 /4,5 ZR W	S AI 5087 (AIMg4,5MnZr)	157
A 405 W	S AI 4043 (ALSi5)	158
A 407 W	S AI 4047 (AISi12)	159
A 411	-	160

FONTARGEN A 200 W

ISO 24373:	S Cu 1897 (CuAg1)
AWS A 5.7:	ERCu
Material-no.:	2.1211

Composition, typical analysis (% w/w):

Ag	Р	Mn	Cu
1	0.02	0.1	Remainder

Characteristics / Applications:

Joint and build-up welding on copper, for example material numbers: 2.0040 (OF-Cu), 2.0060 (E-Cu 57), 2.0070 (SE-Cu), 2.0090 (SF-Cu), 2.0110 (SD-Cu), 2.0150 (SB-Cu), 2.0170 (SA-Cu), 2.1202 (Cu Ag), plates, profiles, containers. Suited for copper pipe installations in accordance with DVGW work sheet GW 2.

Preheat large work pieces to 350 $^\circ\text{C}$ - 600 $^\circ\text{C};$ use Ar-He inert-gas mixture if necessary.

Mechanical properties of pure welding deposit

(Min. values at room temperature):

Melting range:	1070 - 1080 °C
Tensile strength:	200 N/mm ²
Yield strength (0.2 %):	80 N/mm ²
Elongation (I=5d):	30 %
Hardness (BHN):	60 HB
Impact energy:	75 J
Heat conductivity:	220 - 315 W/m • K
Electrical conductivity (20 °C)	
Thermal elongation:	17.7 • 10 ⁻⁶ /K
Specific gravity:	8.9 kg/dm ³
Welding process:	TIG, gas welding
Shielding gas (DIN EN 439)): I 1 (Argon)
	I 3 (Argon/Helium mixture)
Flux:	F 100 (Paste) at preheating to > 300 °C
Current mode:	DC (-pole)
Availability:	Diameter (mm): 1.6/2.0/2.4/3.2
-	Length (mm): 1000
Welding position:	according to DIN EN 287
PA PB PC	C PD PE PE PG

PA	PB	PC	PD	PE	PF	PG
\boxtimes						

FONTARGEN A 200 SW

Copper-tin	welding rod
------------	-------------

ISO 24373:	S Cu 1898 (CuSn1)
AWS A 5.7:	ERCu
Material-no.:	2.1006

Composition, typical analysis (% w/w):

Sn	Si	Mn	Р	Cu
0.8	0.3	0.3	0.01	Remainder

Characteristics / Applications:

Joint and build-up welding on copper and copper alloys of material numbers: 2.0040, 2.0060, 2.0070, 2.0080, 2.0090, 2.0100, 2.0120, 2.0150, 2.0170, 2.1202, 2.1322, 2.1325, 2.1491. Suitable for copper pipe installations according to DVGW work sheet GW 2. The base materials in the welding spheres should be cleaned and preheated if over 3 mm (per mm of plate thickness approx 100 °C but not over 600 °C). For preheating temperatures of over 300 °C, flux should be used.

Mechanical properties of pure welding deposit (Min values at room temperature):

(with values at room temperatu	ie).
Melting range:	1020 - 1050 °C
Tensile strength:	200 N/mm ²
Elongation (I=5d):	30 %
Hardness (BHN):	60 HB
Impact energy:	75 J
Heat conductivity:	120 - 145 W/m • K
Electrical conductivity (20 °C):	15 - 20 Sm/mm²
Thermal elongation:	18 • 10⁻⁶/K
Welding process:	TIG, gas welding
Shielding gas (DIN EN 439):	I 1 (Argon)
	I 3 (Argon/Helium mixture)
Flux:	F 100 (Paste) at preheating > 300 °C
Current mode:	DC (-pole)
Availability:	Diameter (mm): 1.6/2.0/2.4/3.2
	Length (mm): 1000
Wolding positions:	according to DIN EN 287

Welding positions:

according to DIN EN 287

PA	PB	PC	PD	PE	PF	PG
\boxtimes	\boxtimes	\square			\boxtimes	
19/11/11/1						

FONTARGEN A 202 W

Copper-silicon welding rod

ISO 24373:	S Cu 6560 (CuSi3Mn1)
AWS A 5.7:	ERCuSi-A
Material-no.:	2.1461

Composition, typical analysis (% w/w):

Si	Sn	Zn	Mn	Fe	Cu
2.9	0.1	0.1	1	0.1	Remainder

Characteristics / Applications:

High temperature- and corrosion resistance as well as good behaviour to compression stress. Thanks to high silicon content liquid welding deposit that results in flat seams.

Joint and build-up welding on copper alloys of material numbers 2.0853, 2.0855, 2.0857, 2.1243, 2.1245, 2.1247, 2.1265, 2.1266, 2.1267, 2.1270, 2.1285, 2.1322, 2.1323, 2.1363, 2.1366, 2.1522, 2.1525, 2.1545, 2.1546, brass as well as build-up welding on unalloyed or low-alloyed steels and cast iron. To avoid hot cracks keep welding pool small and feed fast. Preheat thick workpieces to 350 - 600 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(initia valuee at reent temperate	
Melting range:	910 - 1025 °C
Tensile strength:	350 N/mm²
Yield strength (0.2 %):	120 N/mm ²
Elongation (I=5d):	40 %
Thermal elongation:	18 • 10⁻⁰/K
Hardness (Brinell):	85 - 100 HB
Electrical conductivity:	3 - 4 Sm/mm²
Heat conductivity:	35 W/m • K
Specific gravity:	8.5 g/cm ³
Welding process:	TIG
Shielding gas (DIN EN 439):	I 1 (Argon)
Current mode:	DC (-pole)
Availability:	Diameter (mm): 1.6/2.0/2.4/3.2 Length (mm): 1000

Welding position: according to DIN EN 287 PA PB PC PD PE PF PG Image: Second state of the se

FONTARGEN A 207 W

Copper-silicon-manganese welding rod

ISO 24373:	S Cu 6511 (CuSi2Mn1)
Material-no.:	2.1522

Composition, typical analysis (% w/w):

Si	Sn	Mn	Cu
1.8	0.2	1	Remainder

Characteristics / Applications:

Easy to weld. High temperature- and corrosion resistance as well as good behaviour under compression stress. Good wetting of the base material with low working temperature compared to copper. Flat seams due to silicon content. Little pore formation. Welding deposit has good modelling properties. Welding of galvanised autobody steel sheets, other steels as well as copper, copper alloys and cast iron.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(min. values at room temperata	nc).
Melting range:	1030 - 1050 °C
Tensile strength:	285 N/mm ²
Yield strength (0.2 %):	140 N/mm ²
Elongation (I=5d):	45 %
Hardness (Brinell):	62 HB
Electrical conductivity:	4.7 - 5.3 Sm/mm ²
Heat conductivity:	40 W/m • K
Specific gravity:	8.7 g/cm ³
Coefficient of expansion:	18.1 •10 ⁻⁶ /K
Welding process:	TIG
Shielding gas (DIN EN 439):	I 1 (Argon)
Current mode:	DC (-pole)
Availability:	Diameter (mm): 1.6/2.0
	Length (mm): 1000
Welding position:	according to DIN EN 287

weiung p	USILIOII.		according	IO DIN LN	207	
PA	PB	PC	PD	PE	PF	PG
\square	\square	\boxtimes		\boxtimes	\boxtimes	

FONTARGEN A 203/6 W

Copper-tin	welding rod
------------	-------------

ISO 24373:	S Cu 5180 (CuSn6P)
AWS A 5.7:	ERCuSn-A
Material-no.:	2.1022

Composition, typical analysis (% w/w):

Sn	P	Cu
6	0.2	Remainder

Characteristics / Applications:

Welding of copper materials, e.g. copper and Sn bronze. Particularly well suited for joint welding of brass on brass or brass on other Cu alloys, (Rg), Fe materials and cast iron. Other applications include: Building-up of bearing bushes, sliding rails and repairs of tin bronze parts. For tin bronze parts of more than 8 mm thickness we recommend preheating. Suitable for material numbers: 2.1010, 2.1016, 2.1020, 2.1030, 2.1050, 2.1052, 2.1056, 2.1080, 2.1086, 2.1090, 2.1096.

Corrosion- and overheating-resistant tin-bronze alloy. A 203/6 W is very easily machined and produces a clear weld pool. The welding deposit is tough and non-porous.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(with values at room temperat	ure).
Melting range:	910 - 1040 °C
Tensile strength:	330 N/mm²
Elongation (I=5d):	30 %
Hardness (Brinell):	80 HB
Electrical conductivity:	7 - 9 Sm/mm²
Thermal conductivity:	75 W/m • K
Linear expansion:	18.5 • 10 ⁻⁶ /K
Welding process:	TIG, gas welding
Shielding gas (DIN EN 439):	I 1 (Argon)
Current mode:	DC (-pole)
Availability:	Diameter (mm): 1.6/2.0/2.4/3.2/4.0 Length (mm): 1000

Welding position:

according to DIN EN 287

PA PB PC PD PE	PF	PG

FONTARGEN A 203/12 W Copper-tin welding rod

ISO 24373:	S Cu 5410 (CuSn12P)
AWS A 5.13:	ERCuSn-D
Material-no.:	2.1056

Composition, typical analysis (% w/w):

Sn	P	Cu
12	0.2	Remainder

Characteristics / Applications:

Welding of copper materials, e.g. copper and Sn-bronze. Particularly well suited for joint welding of brass or brass on Cu alloys and Fe materials. Building-up of bearing bushes, sliding rails and repairs of phosphor bronze parts. Welding deposit very similar coloured as welding of red brass Rg 5. Suitable for material numbers: 2.1020, 2.1050, 2.1056, 2.1086, 2.1016, 2.1030, 2.1052, 2.1080.

Mechanical properties of pure welding deposit

(Min. values at room temperatu	ure):
Melting range:	825 - 990 °C
Tensile strength:	320 N/mm ²
Elongation (I=5d):	5 %
Hardness (BHN):	120 HB
Heat conductivity:	40 - 50 W/m • K
Electrical conductivity (20 °C):	3 - 5 Sm/mm²
Linear expansion:	18.5 • 10 ⁻⁶ /K
Specific gravity:	8.6 kg/dm ³
Welding process:	TIG, gas welding
Shielding gas (DIN EN 439):	I 1 (Argon)
Current mode:	DC (-pole)
Availability:	Diameter (mm): 1.6/2.0/2.4/3.2 Length (mm): 1000
147 1 12 241	

Welding position:

according to DIN EN 287

1	DA .	DB	PC.	PD	DE	DE	PG
				FD			FO
	\boxtimes						

FONTARGEN A 215/8 W

|--|

EN DIN 14640:	S Cu 6100 (CuAl8)
AWS A 5.7:	ERCuAl-A1
Material-no.:	2.0921

Composition, typical analysis (% w/w):

AI	Ni	Mn	Fe	Cu
8	0.5	0.2	0.2	Remainder

Characteristics / Applications:

Corrosion- and seawater-resistant alloy with very good glide properties (metal-metal). A 215/8 W is very easy to handle and ensures a perfect weld in the root pass and a clean top surface. The seam is smooth and non-porous.

Joint and build-up welding on aluminium-bronze, high-strength brass, steel and cast iron. For use in the machine-, chemical- as well as shipbuilding industries. Joint welding: Corrosion-resistant aluminium-bronze or highstrength brass pipework. Joining of copper conduits with steel. Joining of material numbers 2.0916, 2.0920, 2.0928. Preheat thick workpieces to 200 °C. Build-up welding: Building-up of ship propellers, kid rails, running surfaces, bearings, valves, slide gates, fittings, etc.

Mechanical properties of pure welding deposit

(Min. values at room temperature):				
Melting range:	1030 - 1040 °C			
Tensile strength:	380 N/mm²			
Yield strength (0.2 %):	200 N/mm ²			
Elongation (I=5d):	45 %			
Hardness (Brinell):	11 HB			
Electrical conductivity:	8 Sm/mm²			
Thermal conductivity:	65/m • K			
Specific gravity:	7.7 g/cm ³			
Linear expansion:	17 • 10 ⁻⁶ / K			
Welding process:	TIG			
Shielding gas (DIN EN 439):	I 1 (Argon)			
Current mode:	DC (-pole)			
	Recommendation: Utilization of flux F 200			
Availability:	Diameter (mm): 2.0			
2	Length (mm): 1000			
Welding position:	according to DIN EN 287			
PA PB PC	PD PE PF PG			

FONTARGEN A 216 W

Copper-a	luminium	nickel	rod
----------	----------	--------	-----

ISO 24373:	S Cu 6327 (CuAl8Ni2Fe2Mn2)
AWS A 5.17 :	ERCuNiAl
Material-no.:	2.0922

Composition, typical analysis (% w/w):

Al	Ni	Mn	Fe	Cu
8	2	1.5	1.5	Remainder

Characteristics / Applications:

Joint and build-up welding on multi-alloyed aluminium-bronze, for example material numbers: 2.0916, 2.0920, 2.0928, 2.0932, 2.0936, 2.0940, 2.0960, 2.0966, 2.0970, 2.0975, 2.0975 and 2.0980. Build-up welding on steel and copper alloys. Fusion welding between steel and aluminium-bronze (also multi-alloys). Suitable for welding (MIG brazing) of aluminium surfaced and galvanised steels. For use in shipbuilding, machine, apparatus and pump construction; for example ship propellers, pump casings, valve control casings and food containers. Preheating necessary only with large workpieces. For the first run of build-up welds on ferrous base material we recommend pulsed-arc welding.

The welding deposit is saltwater- and corrosion resistant as well as wear resistant. Well suited if at the same time subjected to wear by salt water, cavitation and erosion.

Mechanical properties of pure welding deposit

(Min. values at room temperature):

(initia values at room	temperata	
Melting range:		1030 - 1050 °C
Tensile strength:		530 N/mm²
Yield strength (0.2 %):		290 N/mm ²
Elongation (I=5d):		30 %
Impact energy (ISO-V):	70 J
Hardness (Brinell):		140 HB
Electrical conductivity:		5 Sm/mm²
Thermal conductivity:		58 W/m • K
Linear expansion:		17 • 10⁻⁶ / K
Welding process:		TIG
Shielding gas (DIN E	N 439):	I 1 (Argon)
Current mode:		DC (-pole)
		Recommendation: Utilization of flux F 200
Availability:		Diameter (mm): 2.0
		Length (mm): 1000
Welding position:		according to DIN EN 287
PA PB	PC	PD PE PF PG

PA	PB	PC	PD	PE	PF	PG
\square	\boxtimes	\boxtimes		\boxtimes	\boxtimes	

11/11/SR/0

FONTARGEN AF 216 MK

Copper-aluminium nickel rod, flux coated

EN DIN 14640: Material-no.: S Cu 6327 (CuAl8Ni2) 2 0922

Composition, typical analysis (% w/w):

AI	Ni	Mn	Fe	Cu
8	2	1.5	1.5	Remainder

Characteristics / Applications:

Joint and build-up welding on multi-alloyed aluminium-bronze, for example material numbers: 2.0916, 2.0920, 2.0928, 2.0932, 2.0936, 2.0940, 2.0960, 2.0966, 2.0970, 2.0975, 2.0978 and 2.0980. Build-up welding on steel and copper alloys. Fusion welding between steel and aluminium-bronze (also multi-alloys). Suitable for welding (MIG brazing) of aluminium surfaced and galvanised steels. For use in shipbuilding, machine, apparatus and pump construction; for example ship propellers, pump casings, valve control casings and food containers. Preheating necessary only with large workpieces. For the first run of build-up welds on ferrous base material we recommend pulsed-arc welding. The welding deposit is saltwater- and corrosion resistant as well as wear resistant. Well suited if at the same time subjected to wear by salt water, cavitation and erosion. Due to the added flux, the wetting characteristics are improved. Pore-free welding seam.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(minin valado at room tomporati	
Melting range:	1030 - 1050 °C
Tensile strength:	530 N/mm²
Yield strength (0.2 %):	290 N/mm ²
Elongation (I=5d):	30 %
Impact energy (ISO-V):	70 J
Hardness (Brinell):	140 HB
Electrical conductivity:	5 Sm/mm ²
Thermal conductivity:	58 W/m • K
Linear expansion:	17 • 10 ⁻⁶ / K
Flux:	F 200 (Special flux)
Welding process:	TIG
Shielding gas (DIN EN 439):	l 1 (argon)
Current mode:	DC (-pole), AC
	Recommendation: Utilization of flux F 200
Availability:	Diameter (mm): 2.0
-	Length (mm): 1000
Welding position:	according to DIN EN 287

PA PB PC PD PE PF PG X<							
	PA	PB	PC	PD	PE	PF	PG
	\square	\square	\boxtimes		\square	\square	

FONTARGEN A 400 Ti W

ISO 18273:	
Material-no.:	

S AI 1450 (AI99,5Ti) 3.0805

Composition, typical analysis (% w/w):

Fe	Si	Cu	Zn	Ti	Al
0.4	0.2	0.05	0.05	0.1	Remainder

Characteristics / Applications:

Aluminium alloy with good fluidity. Weldable in all positions. The Ti-content ensures a grain refinement of the welding deposit. Joint welding of base materials: Al 98; Al 99; Al 99,5; E Al; Al 99,8 und Al 99,7. For plates thicker than 15 mm, preheat to a min. of 150 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(initia valuee at reent temperata	10).
Melting range:	647 - 658 °C
Tensile strength:	65 N/mm²
Yield strength (0.2 %):	20 N/mm ²
Elongation (I=5d):	35 %
Electrical conductivity:	34 Sm/mm ²
Specific gravity:	2.71 g/cm ³
Welding process:	TIG
Shielding gas (DIN EN 439):	I 1 (Argon)
	I 3 (Argon/Helium mixture)
Current mode:	AC
Availability:	Diameter (mm): On request
-	Length (mm): 1000
Welding positions:	according to DIN EN 287

 PA
 PB
 PC
 PD
 PE
 PF
 PG

 Image: Im

FONTARGEN A 402 W

Aluminium welding rod

ISO 18273:	S AI 5754 (AIMg3)
AWS A 5.10:	ER5754
Material-no.:	3.3536

Composition, typical analysis (% w/w):

Mg	Mn	Fe	Si	Cr	Ti	Al
3	0.3	0.2	0.2	0.1	0.1	Remainder

Characteristics / Applications:

Corrosion- and saltwater-proof alloy. Easily anodised. Welding of rolled and cast aluminium-magnesium alloys e.g. Al Mg 3, Al Mg Mn, Al Mg 1, Al Mg 2, Al Mg Si 0,5, Al Mg Si 0,8, G-Al Mg 3, G-Al Mg 3 (Cu), G-Al Mg 3 Si. Manufacturing of containers, aluminium constructions, constructions of vehicles, ship building, window and door frames. Plates thicker than 15 mm must be preheated to approx. 150 °C - 200 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(
Melting range:		615 - 642	°C			
Tensile strength:		190 N/mm	1 ²			
Yield strength (0.2 %):		80 N/mm ²				
Elongation (I=5d):		20 %				
Electrical conductivity:		20 - 23 Sn	n/mm²			
Specific gravity:		2.66 g/cm ³				
Welding process: TIG						
Shielding gas (DIN E	Shielding gas (DIN EN 439): I 1 (Argon) I 3 (Argon/Helium mixture)					
Current mode:		AC				
Availability:		Diameter	(mm): 1.6/2	.0/2.4/3.2		
Length (mm): 1000						
Welding positions:		according	to DIN EN	287		
PA PB	PC	PD	PE	PF	PG	
	\square					

FONTARGEN A 404 W

Aluminium-magnesium welding ro	od	
--------------------------------	----	--

ISO 18273:	S AI 5356 (AIMg5Cr(A))
AWS A 5.10:	ER5356
Material-no.:	3.3556

Composition, typical analysis (% w/w):

Mg	Mn	Fe	Si	Cr	Ti	Al
5	0.1	0.2	0.2	0.1	0.1	Remainder

Characteristics / Applications:

Corrosion- and saltwater-proof alloy. Easily anodised. Welding of rolled and cast aluminium-magnesium alloys according to DIN 1725 Bl. 1 and Bl. 2, like Al Mg 3, Al Mg 5, Al Mg Mn, Al Zn Mg 1, G-Al Mg 3/+Si/+Cu, G-Al Mg 5/+Si, G-Al Mg 10, Al Mg Si 1. Tank constructions, construction of vehicles, aluminium constructions, shipbuilding, windows, etc. For plates thicker than 15 mm preheat, to min. 150 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(initial value)	50 at 100111	tomporata					
Melting ran	ige:		575 - 633 °C				
Tensile stre	ength:		235 N/mm	1 ²			
Yield stren	gth (0.2 %):		110 N/mm	1 ²			
Elongation	(I=5d):		8 %				
Electrical c	onductivity:		15 - 19 Sn	n/mm²			
Specific gra	avity:		2.64 g/cm	3			
Welding process:			TIG				
Shielding gas (DIN EN 439):			I 1 (Argon) I 3 (Argon/Helium mixture)				
Current m	ode:		AC				
Availability:		Diameter (mm): 1.6/2.0/2.4/3.2 Length (mm): 1000					
Welding position:			according to DIN EN 287				
PA	PB	PC	PD	PE	PF	PG	
	\square			\square			

FONTARGEN A 404/4,5 W

Aluminium-magnesium welding rod

ISO 18273:	S AI 5183 (AIMg4,5Mn0,7(A))
AWS A 5.10:	ER5183
Material-no.:	3.3548

Composition, typical analysis (% w/w):

Mg	Mn	Fe	Si	Cr	Ti	AI
4.5	0.7	0.2	0.2	0.1	0.1	Remainder

Characteristics / Applications:

Filler metal for joints that have high demands of toughness. The welding deposit has a good resistance to atmospheric influences and sea water. Joint welding on rolled and cast aluminium-magnesium alloys, e.g. Al Mg 4,5 Mn, Al Mg 5, Al Zn 4,5 Mg 1, G-Al Mg 3/+Si/+Cu, G-Al Mg 5/+Si, G-Al Mg 10, Al Mg Si 1. For plates thicker than 15 mm, preheat to min. 150 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(minin value	,o at 100111	tomporata	ai 0).					
Melting ran	ge:		574 - 638 °C					
Tensile stre	ength:		275 N/mm	1 ²				
Yield streng	gth (0.2 %):		125 N/mm	1 ²				
Elongation	(l=5d):		17 %					
Electrical c	onductivity:		16 - 19 Sn	n/mm²				
Specific gra	avity:		2.66 g/cm	3				
Welding process:			TIG					
Shielding	gas (DIN E	N 439):	I 1 (Argon)					
			I 3 (Argon/Helium mixture)					
Current m	ode:		AC					
Availability:			Diameter (mm): 1.6/2.0/2.4/3.2 Length (mm): 1000					
Approval:			DB (61.046.02/QS)					
Welding p	osition:		according to DIN EN 287					
PA	PB	PC	PD	PE	PF	PG		
	\square							

FONTARGEN A 404/4,5 Zr W

Aluminium-magnesium welding rod

ISO 18273:	S AI 5087 (AIMg4,5MnZr)
AWS A 5.10:	ER5087
Material-no.:	3.3546

Composition, typical analysis (% w/w):

Mg	Mn	Fe	Si	Cr	Ti	Zr	AI
4.7	0.9	0.2	0.1	0.1	0.1	0.15	Remainder

Characteristics / Applications:

Zirconic welding deposit for joints of very high toughness. The welding deposit has a good resistance to atmospheric influences and sea water. Joint welding on rolled and cast aluminium-magnesium alloys, e.g. Al Mg 4,5 Mn, Al Mg 5, Al Zn 4,5 Mg 1, G-Al Mg 3/+Si/+Cu, G-Al Mg 5/+Si, G-Al Mg 10, Al Mg Si 1. For plates thicker than 15 mm, preheat to 150 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(111111 141400 41100	in comporate	ai 0).					
Melting range:		574 - 638 °C					
Tensile strength:		275 N/mm	1 ²				
Yield strength (0.2	%):	125 N/mm	1 ²				
Elongation (I=5d):		27 %					
Electrical conductivi	ty:	17 - 19 Sn	n/mm²				
Specific gravity:		2.66 g/cm	3				
Welding process:	TIG						
Shielding gas (DIN	I 1 (Argon) I 3 (Argon/Helium mixture)						
Current mode:		AC					
Availability:	Diameter (mm): On request Length (mm): 1000						
Welding position:	according to DIN EN 287						
PA PB	PC	PD	PE	PF	PG		
	\square		\square				

FONTARGEN A 405 W

Aluminium-silicon	welding rod
-------------------	-------------

ISO 18273:	S AI 4043 (AISi5)
AWS A 5.10:	ER4043
Material-no.:	3.2245

Composition, typical analysis (% w/w):

Fe	Si	Cu	Ti	AI
0.5	5.2	0.1	0.1	Remainder

Characteristics / Applications:

Al-Si alloy with good fluidity. Welding on pure aluminium without surfacemelting the base material is possible. Discolouring when anodised.

Welding of Al Si 5, Al Mg Si 0,5, Al Mg Si 0,8, Al Mg Si 1. Al and Al alloys with an alloy content of max. 7 %. For plates thicker than 15 mm, preheat to 150 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(initia valaco acroom	comporata						
Melting range:		573 - 625	°C				
Tensile strength:		120 N/mm ²					
Yield strength (0.2 %):		40 N/mm ²					
Elongation (I=5d):		8 %					
Electrical conductivity:		24 - 32 Sr	n/mm²				
Heat conductivity:		170 W/m	۰K				
Specific gravity:		2.68 g/cm					
Linear expansion:		22.1 • 10 ⁻⁶	/K				
Welding process:		TIG, gas welding					
Shielding gas (DIN E	N 439):	I 1 (Argon)					
		I 3 (Argon	, /Helium mi	xture)			
Current mode:		AC					
Flux:		For gas welding use flux F 400 M (powder,					
		corrosive,	low melting	g point).			
Availability:		Diameter (mm): 1.6/2.0/2.4/3.2					
		Length (m					
Approval:		DB (61.046.01/QS)					
Welding position:		according to DIN EN 287					
PA PB	PC	PD	PE	PF PF	PG		

PA	PB	PC	PD	PE	PF	PG
	\boxtimes					
12/11/ 11 /1						

FONTARGEN A 407 W

A	lur	nın	um	-SIIIC	on	weid	ing	roa	
_									

ISO 18273:	S AI 4047 (AISi12(A))
AWS A 5.10:	ER4047
Material-no.:	3.2585

Composition, typical analysis (% w/w):

Si	Fe	Mn	Cu	Zn	Ti	AI
12	0.5	0.1	0.1	0.1	0.1	Remainder

Characteristics / Applications:

Al-Si alloy with good fluidity. Not suitable for joints that are subsequently anodised, since the seam turns grey. Al-Si cast alloys with more than 7 % weight content of silicon. In special cases also Al and Al alloys with less than 2 % alloying elements. Tank construction, air-conditioning equipment, household articles, plates, pipes, profiles. Preheat thick plates and large workpieces to approx. 150 °C - 200 °C.

Mechanical properties of pure welding deposit (Min. values at room temperature):

(111111 141400 41100111	tomporata					
Melting range:		573 - 585 °C				
Tensile strength:		130 N/mm	1 ²			
Yield strength (0.2 %)	:	60 N/mm ²				
Elongation (I=5d):		5 %				
Electrical conductivity	:	17 - 27 Sn	n/mm²			
Specific gravity:		2.65 g/cm	3			
Welding process:	TIG, gas welding					
Shielding gas (DIN E	I 1 (Argon) I 3 (Argon/Helium mixture)					
Current mode:	AC					
Availability:	Diameter (mm): 1.6/2.0/2.4/3.2 Length (mm): 1000					
Welding position:	according to DIN EN 287					
PA PB	PC	PD	PE	PF	PG	
	\square		\square			
13/11/ 11 /1						

_1	_			
	fontar	gen	brazir	Ъ

AWS A 5.10:	ER AZ 61 A
AMS:	4350 F
B.S.:	1354
Material-no.:	3.5612

Composition, typical analysis (% w/w):

AI	Si	Mn	Zn	Mg
6,5	0,2	0,4	1,0	Remainder

Characteristics / Applications:

A 411 is easy to handle. The bonding is achieved without melting the base material. The welding deposit is free from cracks and pores, colour match to Mg alloys. Corrosion-resistant.

Joint and building up of magnesium and magnesium alloys. Plates, profiles, castings.

Mechanical properties of pure welding deposit

(win. values at room temperati	ire):
Melting range:	594 – 610°C
Tensile strength:	180 N/mm²
Yield strength (0,2%):	100 N/mm ²
Elongation (I=5d):	5 %
Hardness:	50 – 55 HB
Sources of heat:	Oxyacetylene torch and TIG procedure
Shielding gas (DIN EN 439):	l 1 (argon)
Current mode:	Alternating current
Fluxes:	F 400 (powder, corrosive)
	F 400 M (powder, corrosive, low melting
point)	
Availability:	Diameter (mm): 3,0
-	Length (mm): 914
	e , ,

Welding position:

according to DIN EN 287

ſ	PA	PB	PC	PD	PE	PF	PG
	\boxtimes	\boxtimes	\square		\boxtimes	\boxtimes	

Group 5

Technical advice for the practitioner

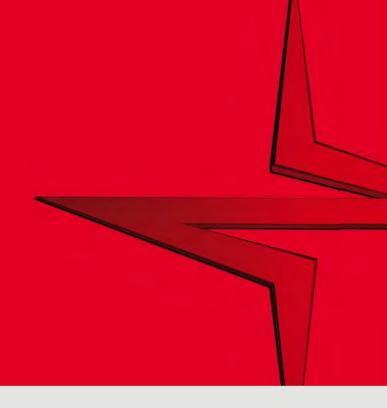
Physical property values of some elements

Aluminium Al 660 2060 2,7 Antimony Sb 630,5 1440 6,62 Beryllium Be 1280 2770 1,82 Lead Pb 327,4 1740 11,34 Boron B 2300 2550 3,3 Chromium Cr 1890 2500 7,19 Iron Fe 1539 2740 7,87 Gold Au 1063 2970 19,32 Indium In 156 2075 7,306 Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 <t< th=""><th>Element</th><th>Symbol</th><th>Melting point (°C)</th><th>Boiling point (°C at 0,1 MPa</th><th>) Density</th></t<>	Element	Symbol	Melting point (°C)	Boiling point (°C at 0,1 MPa) Density
Antimony Sb 630,5 1440 6,62 Beryllium Be 1280 2770 1,82 Lead Pb 327,4 1740 11,34 Boron B 2300 2550 3,3 Chromium Cr 1890 2500 7,19 Iron Fe 1539 2740 7,87 Gold Au 1063 2970 19,32 Indium In 156 2075 7,306 Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150	Aluminium	AI	660	2060	2.7
Beryllum Be 1280 2770 1,82 Lead Pb 327,4 1740 11,34 Boron B 2300 2550 3,3 Chromium Cr 1890 2500 7,19 Iron Fe 1539 2740 7,87 Gold Au 1063 2970 19,32 Indium In 156 2075 7,306 Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,90 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum No 2625 4800	Antimony	Sb	630.5	1440	,
Lead Pb 327,4 1740 11,34 Boron B 2300 2550 3,3 Chromium Cr 1890 2500 7,19 Iron Fe 1539 2740 7,87 Gold Au 1063 2970 19,32 Indium In 156 2075 7,306 Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,90 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum No 2625 4800 10,20 Nickel Ni 1455 2730 <			,.		
Boron B 2300 2550 3,3 Chromium Cr 1890 2500 7,19 Iron Fe 1539 2740 7,87 Gold Au 1063 2970 19,32 Indium In 156 2075 7,306 Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Niobium Nb 2415±15 3300					
Chromium Cr 1890 2500 7,19 Iron Fe 1539 2740 7,87 Gold Au 1063 2970 19,32 Indium In 156 2075 7,306 Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Nickel Ni 1455 3300 8,57 Palladium Pd 1554 4000					
Iron Fe 1339 2740 7,87 Gold Au 1063 2970 19,32 Indium In 156 2075 7,306 Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Nickel Ni 1455 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282	Chromium				
Gold Au 1063 2970 19,32 Indium In 156 2075 7,306 Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Niobium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 173,50 4410		Fe			
Indium In 156 2075 7,306 Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Niobium Nb 2415±15 3300 8,57 Palladium Pd 175,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silicium Si 1430 <td< td=""><td>Gold</td><td>Au</td><td></td><td></td><td>,</td></td<>	Gold	Au			,
Iridium Ir 2454 5300 22,50 Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Niobium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 <t< td=""><td>Indium</td><td></td><td></td><td></td><td></td></t<>	Indium				
Cadmium Cd 321 765 8,65 Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Niobium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 173,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,60 Silocium Si 1430 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Cobalt Co 1495 2900 8,90 Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Niobium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,60 Silver Ag 960,5 2210 10,49 Silicium Si 1430	Cadmium	Cd	321		
Carbon C 3500 - 3,51 Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Niobium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770	Cobalt	Co	1495	2900	
Copper Cu 1083 2600 8,96 Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Niobium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1735 <td>Carbon</td> <td>С</td> <td>3500</td> <td>-</td> <td>3.51</td>	Carbon	С	3500	-	3.51
Lithium Li 186 1370 0,53 Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Niobium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1735<	Copper	Cu	1083	2600	,
Magnesium Mg 650 1110 1,74 Manganese Mn 1245 2150 7,43 Molybdenum Mo 2625 4800 10,20 Nickel Ni 1455 2730 8,90 Nickel Ni 1455 2730 8,90 Nicbium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1735 3400 6,00 Bismuth Bi 271,3		Li	186	1370	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Magnesium	Mg	650		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1245	2150	
Niobium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298		Мо	2625		
Niobium Nb 2415±15 3300 8,57 Palladium Pd 1554 4000 12,00 Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Nickel	Ni	1455	2730	8.90
Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1730 - 4,54 Vanadium V 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Niobium	Nb	2415±15	3300	
Phosphorus P 44 282 1,82 Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1730 - 4,54 Vanadium V 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Palladium	Pd	1554	4000	
Platinum Pt 1773,50 4410 21,45 Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Phosphorus	Р	44	282	
Mercury Hg -38,87 357 13,55 Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298		Pt	1773.50	4410	21.45
Sulfur S 112,8 444,6 2,05 Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1730 - 4,54 Vanadium V 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Mercury	Hq		357	
Silver Ag 960,5 2210 10,49 Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1730 - 4,54 Vanadium V 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Sulfur		112,8	444,6	2,05
Silicium Si 1430 2300 2,33 Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1730 - 4,54 Vanadium V 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Silver	Aq		2210	10,49
Strontium Sr 770 1380 2,60 Tantalum Ta 3000 5300 16,60 Titanium Ti 1730 - 4,54 Vanadium V 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Silicium		1430	2300	2,33
Titanium Ti 1730 - 4,54 Vanadium V 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Strontium	Sr	770	1380	
Vanadium V 1735 3400 6,00 Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Tantalum	Та	3000	5300	16,60
Bismuth Bi 271,3 1420 9,80 Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Titanium	Ti	1730	-	4,54
Wolfram W 3410 5930 19,30 Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Vanadium	V	1735	3400	6,00
Zink Zn 419,50 906 7,136 Tin Sn 231,90 2270 7,298	Bismuth	Bi	271,3	1420	9,80
Tin Sn 231,90 2270 7,298	Wolfram	W	3410	5930	19,30
	Zink	Zn	419,50	906	7,136
Zirconium Zr 1750 2900 6.50	Tin	Sn	231,90	2270	7,298
	Zirconium	Zr	1750	2900	6,50

Physical property values of some alloys

fontargen brazing

Name	Tensile strength (N/mm2)	Melting point (°C)	Density
Steel	340 – 1800	1450 – 1520	7.7 – 7.85
Cast iron	150 - 400	1150 – 1250	7,1 – 7,3
Austenitic Cr-Ni-Steel	600 - 800	1440 – 1460	7,8 - 7,9
Mg-Alloys	180 - 300	590 - 650	1,8 - 1,83
AI-Alloys	100 - 400	570 – 655	2,6-2,85
Zn-Alloys	140 – 300	380 - 420	5,7-7,2
Brass	250 - 600	900 - 950	8,25
Bronze	200 - 300	880 - 1040	8.56 - 8.9



During the brazing process the necessary fluxes and metals can endanger the brazing technician due to their characteristics and composition as well as improper handling.

Therefore eye-, skin- and mucous membrane contact should be avoided at all costs.

Inevitably, brazing leads to flux and metal vaporization and in regard to brazing powders fine metal dust, which can also have negative effects on your health. As a protection for the fabricator the basic rules of work hygiene and UVV-VGW 15 "Welding, cutting and similar processes" must be strictly adhered to. Further information on each product is provided via technical data sheets and safety data sheets according to EU directive 91/155/EWG. Those are being updated regularly and apply to effective technical rules.

All information concerning our products, equipment and processes is based on extensive research work and application technology experience. We provide these results orally and in writing in all conscience; this not however exempting the consumer from the obligation to check our products and processes on his own responsibility, especially if the application and process has not been expressly approved by us in writing. The test certificates enclosed do not exempt the user from carrying out correct incoming goods inspections in accordance with Sections 377/378 *HGB* (German commercial code). Numbers 10 and 11 of our General Terms of Sale and Delivery have validity for any damaging events.

